Главная страница
qrcode

Электрические цепи постоянного тока. Основные понятия


НазваниеЭлектрические цепи постоянного тока. Основные понятия
Дата12.08.2019
Размер1,48 Mb.
Формат файлаdocx
Имя файлаBilety_k_ekzamenu_Electro.docx
ТипДокументы
#107811
страница1 из 8
Каталог
  1   2   3   4   5   6   7   8


Электрические цепи постоянного тока. Основные понятия.
Электрическая цепь - это совокупность электротехнических устройств, предназначенных для генерирования, передачи и преобразования электрической энергии, соединенные между собой электрическими проводами. Например, аккумуляторная батарея, лампа и выключатель, соединенные между собой проводами, образуют электрическую цепь.

Отдельные электротехнические устройства, образующие электрическую цепь, называются элементами электрической цепи и делятся на 3 группы:

Генерирующие устройства (источники электрической энергии) – это элементы электрической цепи, преобразующие различные виды энергии (тепловую, химическую, световую, механическую) в электрическую энергию.

Приемные устройства (приемники электрической энергии) – это элементы электрической цепи, преобразующие электрическую энергию в другие виды энергии.

Вспомогательные устройства – это элементы электрической цепи, которые предназначены для управления, регулирования режимов работы, защиты, контроля и измерения параметров в электрической цепи и не связаны непосредственно с основным преобразованием энергии.

Все электротехнические устройства, являющиеся элементами электрических цепей имеют условные графические обозначения, установленные ГОСТом. Эти условные графические обозначения позволяют графически изображать электрическую цепь. Такое графическое изображение электрической цепи, содержащее условные изображения её элементов и показывающее их соединение, называется принципиальной схемой или схемой электрической цепи.



При расчете в схеме электрической цепи выделяют несколько основных элементов.

Ветвь электрической цепи (схемы) – участок цепи с одним и тем же током. Ветвь может состоять из одного или нескольких последовательно соединенных элементов.

Узел электрической цепи (схемы) – место соединения трех и более ветвей.

Контур – любой замкнутый путь, проходящий по нескольким ветвям.

2. Положительные направления токов и напряжений.

Согласно электронной теории электропроводности валентные электроны в металлах легко отделяются от атомов, которые становятся положительными ионами. Ионы образуют в твердом теле кристаллическую решетку с пространственной периодичностью. Свободные электроны хаотически движутся в пространстве решетки между атомами (тепловое движение), сталкиваясь с ними.

Под действием продольного электрического поля напряженностью &, создаваемого в проводнике длиной
В общем случае
Постоянный ток I = |Q
Основная единица тока в международной системе единиц (СИ) -


* При постоянном токе 1 А в двух параллельных прямолинейных проводниках бесконечной длины и ничтожно малой площади поперечного кругового сечения, расположенных на расстоянии 1 м один от другого в вакууме, сила их взаимодействия равна 2 • 10"7 Н/м (ньютон на метр.)

И






Аналогичное обозначение можно принять и для тока. Например, обозначение I

3) Резистивные элементы. Источники постоянного ЭДС и тока.

Резистивным называют идеализированный двухполюсный элемент, для которого связь между напряжением и током можно представить в виде графика, называемого вольт-амперной характеристикой. Резистивный элемент моделирует процесс необратимого преобразования электромагнитной энергии в тепло и другие виды энергии, при этом запасание энергии в электромагнитном поле отсутствует.

Источник ЭДС

Им считается идеальный источник, представляющий собой двухполюсник, на зажимах которого электродвижущая сила (и напряжение) всегда поддерживается постоянным значением. На него не влияет нагрузка сети, а внутреннее сопротивление у источника равно нулю.

На схемах он обычно обозначается кругом с буквой «Е» и стрелкой внутри, показывающей положительное направление ЭДС (в сторону увеличения внутреннего потенциала источника).

Теоретически на выводах у идеального источника напряжение не зависит от величины тока нагрузки и является постоянной величиной. Однако, это условная абстракция, которая не может быть осуществлена на практике. У реального источника при увеличении тока нагрузки значение напряжения на зажимах всегда уменьшается.

В действительности источниками напряжения работают различные химические и гальванические элементы, аккумуляторные батареи, электрические сети. Их разделяют на источники:
постоянного и переменного напряжения;
управляемые напряжением или током.

Источники тока

Ими называют двухполюсники, создающий ток, который является строго постоянной величиной и никак не зависит от значения сопротивления на подключенной нагрузке, а внутреннее сопротивление его приближается к бесконечности. Это тоже теоретическое допущение, которое на практике не может быть достигнуто.

Для идеального источника тока напряжение на его клеммах и мощность зависят только от сопротивления подключенной внешней схемы. При этом с увеличением сопротивления они возрастают.

Реальный источник тока отличается от идеального значением внутреннего сопротивления.

Примерами источника тока могут служить:
Вторичные обмотки трансформаторов тока, подключенных в первичную схему нагрузки своей силовой обмоткой. Все вторичные цепи работают в режиме надежного шунтирования. Размыкать их нельзя — иначе возникнут перенапряжения в схеме.
Генератор тока, собранный на биполярных транзисторах, управляемый напряжением или током.
В различной литературе источники тока и напряжения могут обозначаться неодинаково.











5. Метод расчета режимов электрической цепи на основе законов Кирхгофа


6 Метод расчёта режимов электрической цепи: метод эквивалентных преобразований
Метод расчета режимов электрической цепи метод эквивалентных преобразований
Последовательно соединение

На основании второго закона Кирхгофа общее напряжение U всей цепи равно сумме напряжений на отдельных участках:

U=UUUIRIRIRIR
откуда следует RRRR
Таким образом, при последовательном соединении элементов цепи общее эквивалентное сопротивление цепи равно арифметической сумме сопротивлений отдельных участков. Следовательно, цепь с любым числом последовательно включенных сопротивлений можно заменить простой цепью с одним эквивалентным сопротивлением R
Параллельное соединение

В этом случае они присоединены к двум узлам цепи а и b, и на основании первого закона Кирхгофа можно записать, что общий ток I всей цепи равен алгебраической сумме токов отдельных ветвей:

I=III
откуда следует, что .

В том случае, когда параллельно включены два сопротивления RR
(1.7) .

Смешанное соединение

Для цепи, представленной на рис. 1.7, расчет эквивалентного сопротивления начинается с конца схемы. Для упрощения расчетов примем, что все сопротивления в этой схеме являются одинаковыми: RRRRRR. Сопротивления RR

Соединение элементов электрической цепи по схемам «звезда» и «треугольник»

В электротехнических и электронных устройствах элементы цепи соединяются по мостовой схеме (рис. 1.12). Сопротивления RRRRРис. 1.12
Рис. 1.13
В мостовой схеме сопротивления RRRRRRRRRRRR
;  ;  .

Для замены схемы «звезда» эквивалентным треугольником необходимо рассчитать сопротивления треугольника:

;  ;  .

После проведенных преобразований (рис. 1.13) можно определить величину эквивалентного сопротивления мостовой схемы (рис. 1.12)

  1   2   3   4   5   6   7   8

перейти в каталог файлов


связь с админом