Главная страница

Книга 2 Занимательная физика. В 2х книгах. Книга 2


Скачать 3.33 Mb.
НазваниеКнига 2 Занимательная физика. В 2х книгах. Книга 2
АнкорYa_I_Perelman_Zanimatelnaya_fizika_Kniga_2.pdf
Дата17.05.2017
Размер3.33 Mb.
Формат файлаpdf
Имя файлаYa_I_Perelman_Zanimatelnaya_fizika_Kniga_2.pdf
ТипКнига
#33752
страница2 из 14

С этим файлом связано 80 файл(ов). Среди них: и ещё 70 файл(а).
Показать все связанные файлы
1   2   3   4   5   6   7   8   9   ...   14
Глава вторая. СИЛА. РАБОТА. ТРЕНИЕ.
Задача о лебеде, раке и щуке

История о том, как «лебедь, рак да щука везти с поклажей воз взялись», известна всем.
Но едва ли кто пробовал рассматривать эту басню с точки зрения механики. Результат получается вовсе не похожий на вывод баснописца Крылова.
Перед нами механическая задача на сложение нескольких сил, действующих под углом одна к другой. Направление сил определено в басне так:
… Лебедь рвется в облака,
Рак пятится назад, а щука тянет в воду.
Это значит (рис. 12), что одна сила, тяга лебедя, направлена вверх; другая, тяга щуки
(ОВ), – вбок; третья, тяга рака (ОС), – назад. Не забудем, что существует еще четвертая сила
– вес воза, которая направлена отвесно вниз. Басня утверждает, что «воз и ныне там», другими словами, что равнодействующая всех приложенных к возу сил равна нулю.
Так ли это? Посмотрим. Лебедь, рвущийся к облакам, не мешает работе рака и щуки, даже помогает им: тяга лебедя, направленная против силы тяжести, уменьшает трение колес о землю и об оси, облегчая тем вес воза, а может быть, даже вполне уравновешивая его, – ведь груз невелик («поклажа бы для них казалась и легка»). Допустив для простоты последний случай, мы видим, что остаются только две силы: тяга рака и тяга щуки. О направлении этих сил говорится, что «рак пятится назад, а щука тянет в воду». Само собой разумеется, что вода находилась не впереди воза, а где-нибудь сбоку (не потопить же воз собрались Крыловские труженики!). Значит, силы рака и щуки направлены под углом одна к другой. Если приложенные силы не лежат на одной прямой, то равнодействующая их никак не может равняться нулю.
Рисунок 12. Задача о крыловских лебеде, раке и щуке, решенная по правилам механики.
Равнодействующая (OD) должна увлекать воз в реку.
Поступая по правилам механики, строим на обеих силах ОВ и ОС параллелограмм, диагональ его OD дает направление и величину равнодействующей. Ясно, что эта равнодействующая сила должна сдвинуть воз с места, тем более, что вес его полностью или частично уравновешивается тягой лебедя. Другой вопрос – в какую сторону сдвинется воз: вперед, назад или вбок? Это зависит уже от соотношения сил и от величины угла между ними.
Читатели, имеющие некоторую практику в сложении и разложении сил, легко разберутся и в том случае, когда сила лебедя не уравновешивает веса воза; они убедятся, что воз и тогда не может оставаться неподвижным. При одном только условии воз может не сдвинуться под действием этих трех сил: если трение у его осей и о полотно дороги больше, чем приложенные усилия. Но это не согласуется с утверждением, что «поклажа бы для них казалась и легка».

Во всяком случае, Крылов не мог с уверенностью утверждать, что «возу все нет ходу», что «воз и ныне там». Это, впрочем, не меняет смысла басни.
Вопреки Крылову
Мы только что видели, что житейское правило Крылова: «когда в товарищах согласья нет, на лад их дело не пойдет» – не всегда применимо в механике. Силы могут быть направлены не в одну сторону и, несмотря на это, давать известный результат.
Мало кто знает, что усердные труженики – муравьи, которых тот же Крылов восхвалял как образцовых работников, трудятся совместно именно по способу, осмеянному баснописцем. И дело у них в общем идет на лад. Выручает опять закон сложения сил.
Внимательно следя за муравьями во время работы, вы скоро убедитесь, что разумное сотрудничество их – только кажущееся: на деле каждый муравей работает сам для себя, вовсе и не думая помогать другим.
Вот как описывает работу муравьев один зоолог6:
«Если крупную добычу тащит десяток муравьев по ровному месту, то все действуют одинаково, и получается внешность сотрудничества. Но вот добыча – например гусеница – зацепилась за какое-либо препятствие, за стебель травы, за камешек. Дальше вперед тащить нельзя, надо обогнуть. И тут с ясностью обнаруживается, что каждый муравей по-своему и ни с кем из товарищей не сообразуясь, старается справиться с препятствием (рис. 13 и 14).
Один тащит направо, другой налево; один толкает вперед, другой тянет назад. Переходят с места на место, хватаются за гусеницу в другом месте, и каждый толкает или тянет по- своему. Когда случится, что силы работающих сложатся так, что в одну сторону будут двигать гусеницу четыре муравья, а в другую шесть, то гусеница в конце концов движется именно в сторону этих шести муравьев, несмотря на противодействие четырех».
Приведем (заимствованный у другого исследователя) еще поучительный пример, наглядно иллюстрирующий это мнимое сотрудничество муравьев. На рис. 15 изображен прямоугольный кусочек сыра, за который ухватилось 25 муравьев. Сыр медленно подвигался в направлении, указанном стрелкой А, и можно бы думать, что передняя шеренга муравьев тянет ношу к себе, задняя – толкает ее вперед, боковые же муравьи помогают тем и другим.
Однако это не так, в чем нетрудно убедиться: отделите ножом всю заднюю шеренгу, – ноша поползет гораздо быстрее! Ясно, что эти 11 муравьев тянули назад, а не вперед: каждый из них старался повернуть ношу так, чтобы, пятясь назад, волочить ее к гнезду. Значит, задние муравьи не только не помогали передним, но усердно мешали им, уничтожая их усилия.
Чтобы волочить этот кусочек сыра, достаточно было бы усилий всего четырех муравьев, но несогласованность действий приводит к тому, что ношу тащат 25 муравьев.
Рисунок 13. Как муравьи волокут гусеницу.
6 Е. Елачич, Инстинкт.

Рисунок 14. Как муравьи тянут добычу. Стрелки показывают направления усилий отдельных муравьев.
Рисунок 15. Как муравьи стараются притащить кусочек сыра к муравейнику, расположенному в направлении стрелки А.
Эта особенность совместных действий муравьев давно уже была подмечена Марком
Твеном. Рассказывая о встрече двух муравьев, из которых один нашел ножку кузнечика, он говорит: «Они берут ногу за оба конца и тянут изо всех сил в противоположные стороны.
Оба видят, что что-то неладно, но что – не могут понять. Начинаются взаимные пререкания; спор переходит в драку… Происходит примирение, и снова начинается совместная и бессмысленная работа, причем раненый в драке товарищ является только помехой. Стараясь изо всей мочи, здоровый товарищ тащит ношу, а с ней и раненого друга, который вместо того, чтобы уступить добычу, висит на ней». Шутя, Твен бросает совершенно правильное замечание, что «муравей хорошо работает только тогда, когда за ним наблюдает неопытный натуралист, делающий неверные выводы».
Легко ли сломать яичную скорлупу?
В числе философских вопросов, над которыми ломал свою мудрую голову глубокомысленный Кифа Мокиевич из «Мертвых душ», была такая проблема: «Ну, а если бы слон родился в яйце, ведь скорлупа, чай, сильно бы толста была, – пушкой не прошибешь; нужно какое-нибудь новое огнестрельное орудие выдумать».
Гоголевский философ был бы, вероятно, не мало изумлен, если бы узнал, что и обыкновенная яичная скорлупа, несмотря на тонкость, – тоже далеко не нежная вещь.
Раздавить яйцо между ладонями, напирая на его концы, не так-то легко; нужно немалое усилие, чтобы сломать скорлупу при подобных условиях7.
Столь необычайная крепость яичной скорлупы зависит исключительно от ее выпуклой формы и объясняется так же, как и прочность всякого рода сводов и арок.
На прилагаемом рис. 17 изображен небольшой каменный свод над окном. Груз S (т. е. вес вышележащих частей кладки), напирающий на клинообразный средний камень свода, давит вниз с силой, которая обозначена на рисунке стрелкой А. Но сдвинуться вниз камень не может вследствие своей клинообразной формы; он только давит на соседние камни. При этом сила А разлагается по правилу параллелограмма на две силы, обозначенные стрелками
С и В; они уравновешиваются сопротивлением прилегающих камней, в свою очередь зажатых между соседними. Таким образом, сила, давящая на свод снаружи, не может его разрушить. Зато сравнительно легко разрушить его силой, действующей изнутри. Это и попятно, так как клинообразная форма камней, мешающая им опускаться, нисколько не препятствует им подниматься.
7 Опыт представляет некоторую опасность (скорлупа может вонзиться в руку) и требует осмотрительности.

Рисунок 16. Чтобы сломать яйцо в таком положении, требуется значительное усилие.
Рисунок 17. Причина прочности свода.
Скорлупа яйца – тот же свод, только сплошной. При давлении снаружи он разрушается не так легко, как можно было бы ожидать от такого хрупкого материала. Можно поставить довольно тяжелый стол ножками на четыре сырых яйца – и они не раздавятся (для устойчивости надо снабдить яйца на концах гипсовыми расширениями; гипс легко пристает к известковой скорлупе).
Теперь вы понимаете, почему наседке не приходится опасаться сломать скорлупу яиц тяжестью своего тела. И в то же время слабый птенчик, желая выйти из природной темницы, без труда пробивает клювиком скорлупу изнутри.
С легкостью разламывая скорлупу яйца боковым ударом чайной ложечки, мы и не подозреваем, как прочна она, когда давление действует на нее при естественных условиях, и какой надежной броней защитила природа развивающееся в ней живое существо.
Загадочная прочность электрических лампочек, казалось бы столь нежных и хрупких, объясняется так же, как и прочность яичной скорлупы. Их крепость станет еще поразительнее, если вспомним, что многие из них (пустотные, а не газополные) – почти абсолютно пусты и ничто изнутри не противодействует давлению внешнего воздуха. А величина давления воздуха на электрическую лампочку немалая: при поперечнике в 10 см лампочка сдавливается с обеих сторон силою более 75 кг (вес человека). Опыт показывает, что пустотная электрическая лампочка способна выдержать даже в 2,5 раза большее давление.
Под парусами против ветра
Трудно представить себе, как могут парусные суда идти «против ветра» – или, по выражению моряков, идти «в бейдевинд». Правда, моряк скажет вам, что прямо против ветра идти под парусами нельзя, а можно двигаться лишь под острым углом к направлению ветра.
Но угол этот мал – около четверти прямого угла, – и представляется, пожалуй, одинаково непонятным: плыть ли прямо против ветра или под углом к нему в 22°.
На деле это, однако, не безразлично, и мы сейчас объясним, каким образом можно силой ветра идти навстречу ему под небольшим углом. Сначала рассмотрим, как вообще действует ветер на парус, т. е. куда он толкает парус, когда дует на пего. Вы, вероятно думаете, что ветер всегда толкает парус в ту сторону, куда сам дует. Но это не так: куда бы ветер ни дул, он толкает парус перпендикулярно к плоскости паруса. В самом деле: пусть ветер дует в направлении, указанном стрелками на рис. 18; линия АВ обозначает парус. Так как ветер напирает равномерно на всю поверхность паруса, то заменяем давление ветра силой R, приложенной к середине паруса. Эту силу разложим на две: силу Q, перпендикулярную к парусу, и силу Р, направленную вдоль него (рис. 18, справа). Последняя сила никуда но толкает парус, так как трение ветра о холст незначительно. Остается сила Q, которая толкает парус под прямым углом к нему.
Зная это, мы легко поймем, как может парусное судно идти под острым углом навстречу ветру. Пусть линия КК (рис. 19) изображает килевую линию судна. Ветер дует под
острым углом к этой линии в направлении, указанном рядом стрелок. Линия АВ изображает парус; его помещают так, чтобы плоскость его делила пополам угол между направлением киля и направлением ветра. Проследите на рис. 19 за разложением сил. Напор ветра на парус мы изображаем силой Q, которая, мы знаем, должна быть перпендикулярна к парусу. Силу эту разложим на две: силу R, перпендикулярную к килю, и силу S, направленную вперед, вдоль килевой линии судна. Так как движение судна в направлении R встречает сильное сопротивление воды (киль в парусных судах делается очень глубоким), то сила R почти полностью уравновешивается сопротивлением воды. Остается одна лишь сила S, которая, как видите, направлена вперед и, следовательно, подвигает судно под углом, как бы навстречу ветру8. Обыкновенно это движение выполняется зигзагами, как показывает рис.
20. На языке моряков такое движение судна называется «лавировкой» в тесном смысле слова.
Рисунок 18. Ветер толкает парус всегда под прямым углом к его плоскости.
Рисунок 19. Как можно идти на парусах против ветра.
Рисунок 20. Лавировка парусного судна.
Мог ли Архимед поднять Землю?
«Дайте мне точку опоры, и я подниму Землю!» – такое восклицание легенда
8 Можно доказать, что сила S получает наибольшое значение тогда, когда плоскость паруса делит пополам угол между направлениями киля и ветра.
приписывает Архимеду, гениальному механику древности, открывшему законы рычага.
Рисунок 21. «Архимед рычагом поднимает Землю». Гравюра из книги Вариньона
(1787) о механике.
«Однажды Архимед, – читаем мы у Плутарха, – написал сиракузскому царю Гиерону, которому он был родственник и друг, что данной силой можно подвинуть какой угодно груз.
Увлеченный силой доказательств, он прибавил, что если бы была другая Земля, он, перейдя на нее, сдвинул бы с места нашу».
Архимед знал, что нет такого груза, которого нельзя было бы поднять самой слабой силой, если воспользоваться рычагом: стоит только приложить эту силу к очень длинному плечу рычага, а короткое плечо заставить действовать на груз. Поэтому он и думал, что, напирая на чрезвычайно длинное плечо рычага, можно силой рук поднять и груз, масса которого равна массе земного шара9.
Но если бы великий механик древности знал, как огромна масса земного шара, он, вероятно, воздержался бы от своего горделивого восклицания. Вообразим на мгновение, что
Архимеду дана та «другая Земля», та точка опоры, которую он искал; вообразим далее, что он изготовил рычаг нужной длины. Знаете ли, сколько времени понадобилось бы ему, чтобы груз, равный по массе земному шару, поднять хотя бы на один сантиметр? Не менее тридцати тысяч биллионов лет!
В самом деле. Масса Земли известна астрономам10; тело с такой массой весило бы на
Земле круглым числом 6 000 000 000 000 000 000 000 тонн.
Если человек может непосредственно поднять только 60 кг, то, чтобы «поднять
Землю», ему понадобится приложить свои руки к длинному плечу рычага, которое больше короткого в 100 000 000 000 000 000 000 000 раз!
Простой расчет убедит вас, что, пока конец короткого плеча поднимается на 1 см, другой конец опишет во вселенной огромную дугу в 1000 000 000 000 000 000 км.
Такой невообразимо длинный путь должна была бы пройти рука Архимеда, налегающая на рычаг, чтобы «поднять Землю» только на один сантиметр! Сколько же времени понадобится для этого? Если считать, что Архимед способен был поднять груз в 60 кг на высоту 1 м в одну секунду (работоспособность почти в целую лошадиную силу!), то и тогда для «поднятия Земли» на 1 см потребуется 1000 000 000 000 000 000 000 секунд, или тридцать тысяч биллионов лет! За всю свою долгую жизнь Архимед, напирая на рычаг, не
«поднял бы Земли» даже на толщину тончайшего волоса…
Никакие ухищрения гениального изобретателя не помогли бы ему заметно сократить
9 Под выражением «поднять Землю» мы будем подразумевать – чтобы внести определенность в задачу – поднятие на земной поверхности такого груза, масса которого равна массе нашей планеты.
10 О том, как она была определена, см. «Занимательную астрономию».
этот срок. «Золотое правило механики» гласит, что на всякой машине выигрыш в силе неизбежно сопровождается соответствующей потерей в длине перемещения, т. е. во времени.
Если бы даже Архимед довел быстроту своей руки до величайшей скорости, какая возможна в природе, – до 300 000 км в секунду (скорость света), то и при таком фантастическом допущении он «поднял бы Землю» на 1 см лишь после десяти миллионов лет работы.
Жюль-верновский силач и формула Эйлера
Вы помните у Жюля Верна силача-атлета Матифу? «Великолепная голова, пропорциональная исполинскому росту; грудь, похожая на кузнечный мех; ноги – как хорошие бревна, руки – настоящие подъемные крапы, с кулаками, похожими на молоты…»
Вероятно, из подвигов этого силача, описанных в романе «Матиас Сапдорф», вам памятен поразительный случай с судном «Трабоколо», когда наш гигант силой могучих рук задержал спуск целого корабля.
Вот как рассказывает романист об этом подвиге:
«Судно, освобожденное уже от подпорок, которые поддерживали его по бокам, было готово к спуску. Достаточно было отнять швартов, чтобы судно начало скользить вниз. Уже с полдюжины плотников возились под килем судна. Зрители с живым любопытством следили за операцией. В этот момент, обогнув береговой выступ, появилась увеселительная яхта. Чтобы войти в порт, яхта должна была пройти перед верфью, где подготовляли спуск
„Трабоколо“, и, как только она подала сигнал, пришлось, во избежание всяких случайностей, задержать спуск, чтобы снова приняться за дело после прохода яхты в канал. Если бы суда, – одно, стоявшее поперек, другое, подвигающееся с большой быстротой, – столкнулись, яхта погибла бы.
Рабочие перестали стучать молотками. Все взоры были устремлены на грациозное судно, белые паруса которого казались позолоченными в косых лучах Солнца. Скоро яхта очутилась как раз против верфи, где замерла тысячная толпа любопытных. Вдруг раздался крик ужаса: «Трабоколо» закачалось и пришло в движение в тот самый момент, когда яхта повернулась к нему штирбортом! Оба судна готовы были столкнуться; не было ни времени, ни возможности помешать этому столкновению. «Трабоколо» быстро скользило вниз по наклону… Белый дымок, появившийся вследствие трения, закрутился перед его носом, тогда как корма погрузилась уже в воду бухты (судно спускалось кормой вперед. – Я. П.).
Вдруг появляется человек, схватывает швартов, висящий у передней части
«Трабоколо», и старается удержать его, пригнувшись к земле. В одну минуту он наматывает швартов на вбитую в землю железную трубу и, рискуя быть раздавленным, держит с нечеловеческой силой в руках канат в продолжение 10 секунд. Наконец швартов обрывается.
Но этих 10 секунд было достаточно: «Трабоколо», погрузившись в воду, только слегка задело яхту и пронеслось вперед.
Яхта была спасена. Что касается человека, которому никто не успел даже прийти на помощь, – так быстро и неожиданно все произошло, – то это был Матифу».
Как изумился бы автор романа, если бы ему сказали, что для совершения подобного подвига не нужно вовсе быть великаном и обладать, как Матифу, «силою тигра». Каждый находчивый человек мог бы сделать то же самое!
Механика учит, что при скольжении каната, навитого на тумбу, сила трения достигает большой величины. Чем больше число оборотов каната, тем трение больше; правило возрастания трения таково, что, с увеличением числа оборотов в прогрессии арифметической, трение растет в прогрессии геометрической. Поэтому даже слабый ребенок, держа за свободный конец каната, 3 – 4 раза навитого на неподвижный вал, может уравновесить огромную силу.
На речных пароходных пристанях подростки останавливают этим приемом подходящие к пристаням пароходы с сотней пассажиров. Помогает им не феноменальная сила их рук, а трение веревки о сваю.

Знаменитый математик XVIII века Эйлер установил зависимость силы трения от числа оборотов веревки вокруг сваи. Для тех, кого не пугает сжатый язык алгебраических выражений, приводим эту поучительную формулу Эйлера:
Здесь F – та сила, против которой направлено наше усилие f. Буквой е обозначено число 2,718… (основание натуральных логарифмов), k – коэффициент трения между канатом и тумбой. Буквой а обозначен «угол навивания», т. е. отношение длины дуги, охваченной веревкой, к радиусу этой дуги.
Применим формулу к тому случаю, который описан у Жюля Верна. Результат получится поразительный. Силой F в данном случае является сила тяги судна, скользящего по доку. Вес судна из романа известен: 50 тонн. Пусть наклон стапеля 0,1; тогда на канат действовал не полный вес судна, а 0,1 его, т. е. 5 тонн, или 5000 кг.
Далее, величину k – коэффициента трения каната о железную тумбу – будем считать равной 1/3. Величину а легко определим, если примем, что Матифу обвил канат вокруг тумбы всего три раза. Тогда подставив все эти значения в приведенную выше формулу Эйлера, получим уравнение
Неизвестное f (т. е. величину необходимого усилия) можно определить из этого уравнения, прибегнув к помощи логарифмов:
Lg 5000 = lg f + 2n lg 2,72, откуда f = 9,3 кг.
Итак, чтобы совершить подвиг, великану достаточно было тянуть канат с силой лишь
10 килограммов!
Не думайте, что эта цифра – 10 кг – только теоретическая и что на деле потребуется усилие гораздо большее. Напротив, наш результат даже преувеличен: при пеньковой веревке и деревянной свае, когда коэффициент трения k больше, усилие потребуется до смешного ничтожное. Лишь бы веревка была достаточно крепка и могла выдержать натяжение, – тогда даже слабый ребенок мог бы, навив веревку 3 – 4 раза, не только повторить подвиг жюль- верновского богатыря, но и превзойти его.
От чего зависит крепость узлов?
В обыденной жизни мы, сами не подозревая, часто пользуемся выгодой, на которую указывает нам формула Эйлера. Что такое узел, как не бечевка, навитая на валик, роль которого в данном случае играет другая часть той же бечевки? Крепость всякого рода узлов
– обыкновенных, «беседочных», «морских», завязок, бантов и т. п. – зависит исключительно от трения, которое здесь во много раз усиливается вследствие того, что шнурок обвивается вокруг себя, как веревка вокруг тумбы. В этом нетрудно убедиться, проследив за изгибами шнурка в узле. Чем больше изгибов, чем больше раз бечевка обвивается вокруг себя – тем больше «угол навивания» и, следовательно, тем крепче узел.
Бессознательно пользуется тем же обстоятельством и портной, пришивая пуговицу. Он много раз обматывает нить вокруг захваченного стежком участка материи и затем обрывает ее; если только нитка крепка, пуговица не отпорется. Здесь применяется уже знакомое нам правило: с увеличением числа оборотов нитки в прогрессии арифметической крепость шитья возрастает в прогрессии геометрической.
Если бы не было трения, мы не могли бы пользоваться пуговицами: нитки размотались бы под их тяжестью и пуговицы отвалились бы.
Если бы не было трения
Вы видите, как разнообразно и порой неожиданно проявляется трение в окружающей
нас обстановке. Трение принимает участие, и притом весьма существенное, там, где мы о нем даже и не подозреваем. Если бы трение внезапно исчезло из мира, множество обычных явлений протекало бы совершенно иным образом.
Очень красочно пишет о роли трения французский физик Гильом:
«Всем нам случалось выходить в гололедицу: сколько усилий стоило нам удерживаться от падения, сколько смешных движений приходилось нам проделывать, чтобы устоять! Это заставляет нас признать, что обычно земля, по которой мы ходим, обладает драгоценным свойством, благодаря которому мы сохраняем равновесие без особых усилий. Та же мысль возникает у пас, когда мы едем на велосипеде по скользкой мостовой или когда лошадь скользит по асфальту и падает. Изучая подобные явления, мы приходим к открытию тех следствий, к которым приводит трение. Инженеры стремятся по возможности устранить его в машинах – и хорошо делают. В прикладной механике о трении говорится как о крайне нежелательном явлении, и это правильно, – однако лишь в узкой, специальной области. Во всех прочих случаях мы должны быть благодарны трению: оно дает нам возможность ходить, сидеть и работать без опасения, что книги и чернильница упадут на пол, что стол будет скользить, пока не упрется в угол, а перо выскользнет из пальцев.
Трение представляет настолько распространенное явление, что нам, за редкими исключениями, не приходится призывать его на помощь: оно является к нам само.
Трение способствует устойчивости. Плотники выравнивают пол так, что столы и стулья остаются там, куда их поставили. Блюда, тарелки, стаканы, поставленные на стол, остаются неподвижными без особых забот с нашей стороны, если только дело не происходит на пароходе во время качки.
Вообразим, что трение может быть устранено совершенно. Тогда никакие тела, будь они величиною с каменную глыбу или малы, как песчинки, никогда не удержатся одно на другом: все будет скользить и катиться, пока не окажется на одном уровне. Не будь трения,
Земля представляла бы шар без неровностей, подобно жидкому».
К этому можно прибавить, что при отсутствии трения гвозди и винты выскальзывали бы из стен, ни одной вещи нельзя было бы удержать в руках, никакой вихрь никогда бы не прекращался, никакой звук не умолкал бы, а звучал бы бесконечным эхом, неослабно отражаясь, например, от стен комнаты.
Наглядный урок, убеждающий нас в огромной важности трения, дает нам всякий раз гололедица. Застигнутые ею на улице, мы оказываемся беспомощными и все время рискуем упасть. Вот поучительная выдержка из газеты (декабрь 1927 г.):
«Лондон, 21. Вследствие сильной гололедицы уличное и трамвайное движение в
Лондоне заметно затруднено. Около 1400 человек поступило в больницы с переломами рук, ног и т. д.».
Рисунок 22. Вверху – нагруженные сани на ледяной дороге; две лошади везут 70 тонн груза. Внизу – ледяная дорога; А – колея; B – полоз; С – уплотненный снег; D – земляное основание дороги.
«При столкновении вблизи Гайд-Парка трех автомобилей и двух трамвайных вагонов машины были совершенно уничтожены из-за взрыва бензина…»

«Париж, 21. Гололедица в Париже и его пригородах вызвала многочисленные несчастные случаи…»
Однако ничтожное трение на льду может быть успешно использовано технически. Уже обыкновенные сани служат тому примером. Еще лучше свидетельствуют об этом так называемые ледяные дороги, которые устраивали для вывозки леса с места рубки к железной дороге или к пунктам сплава. На такой дороге (рис. 22), имеющей гладкие ледяные рельсы, две лошади тащат сани, нагруженные 70 тоннами бревен.
Физическая причина катастрофы «Челюскина»
Из сказанного сейчас не следует делать поспешного вывода, что трение о лед ничтожно при всяких обстоятельствах. Даже при температуре, близкой к нулю, трение о лед бывает нередко довольно значительно. В связи с работой ледоколов тщательно изучалось трение льда полярных морей о стальную обшивку корабля. Оказалось, что оно неожиданно велико, не меньше трения железа по железу: коэффициент трения повой стальной судовой обшивки о лед равен 0,2.
Чтобы попять, какое значение имеет эта цифра для судов при плавании во льдах, разберемся в рис. 23; он изображает направление сил, действующих на борт MN судна при напоре льда. Сила Р давления льда разлагается на две силы: R, перпендикулярную к борту, и
F, направленную по касательной к борту. Угол между Р и R равен углу а наклона борта к вертикали. Сила Q трения льда о борт равна силе R, умноженной на коэффициент трения, т. е. на 0,2; имеем: Q = 0,2R. Если сила трения Q меньше F, последняя сила увлекает напирающий лед под воду; лед скользит вдоль борта, не успевая причинить судну вред. Если же сила Q больше F, трение мешает скольжению льдины, и лед при продолжительном напоре может смять и продавить борт.

Рисунок 23. «Челюскин», затертый во льдах. Внизу: силы, действующие на борт MN судна при напоре льда.
Когда же Q «F? Легко видеть, что
F = R tg a; следовательно, должно существовать неравенство:
Q «R tg а; а так как Q = 0,2R, то неравенство Q «F приводит к другому:
0,2R «R tg a, или tg a» 0,2.
По таблицам отыскиваем угол, тангенс которого 0,2; он равен 11°. Значит, Q «F тогда, когда а»11°. Тем самым определяется, какой наклон бортов корабля к вертикали обеспечивает безопасное плавание во льдах: наклон должен быть не меньше 11°.
Обратимся теперь к гибели «Челюскина». Этот пароход, не ледокол, успешно прошел весь северный морской путь, но в Беринговом проливе оказался зажатым во льдах.
Льды унесли «Челюскин» далеко на север и раздавили (в феврале 1934 г.).
Двухмесячное героическое пребывание челюскинцев на льдине и спасение их героями- летчиками сохранилось у многих в памяти. Вот описание самой катастрофы:
«Крепкий металл корпуса сдал не сразу, – сообщал по радио начальник экспедиции О.
Ю. Шмидт. – Видно было, как льдина вдавливается в борт и как над нею листы обшивки пучатся, изгибаясь наружу. Лед продолжал медленное, но неотразимое наступление.
Вспученные железные листы обшивки корпуса разорвались по шву. С треском летели заклепки. В одно мгновение левый борт парохода был оторван от носового трюма до кормового конца палубы…»
После того, что сказано было в этой статье, читателю должна быть понятна физическая
причина катастрофы.
Отсюда вытекают и практические следствия: при сооружении судов, предназначенных для плавания во льдах, необходимо придавать бортам их надлежащий уклон, а именно не менее 11°.
Самоуравновешивающаяся палка
На указательные пальцы расставленных рук положите гладкую палку, как показано на рис. 24. Теперь двигайте пальцы навстречу друг другу, пока они сойдутся вплотную.
Странная вещь! Окажется, что в этом окончательном положении палка не опрокидывается, а сохраняет равновесие. Вы проделываете опыт много раз, меняя первоначальное положение пальцев, но результат неизменно тот же: палка оказывается уравновешенной. Заменив палку чертежной линейкой, тростью с набалдашником, биллиардпым кием, половой щеткой, – вы заметите ту же особенность. В чем разгадка неожиданного финала? Прежде всего ясно следующее: раз палка оказывается уравновешенной на примкнутых пальцах, то ясно, что пальцы сошлись под центром тяжести палки (тело остается в равновесии, если отвесная линия, проведенная из центра тяжести, проходит внутри границ опоры).
Когда пальцы раздвинуты, большая нагрузка приходится на тот палец, который ближе к центру тяжести палки. С давлением растет и трение: палец, более близкий к центру тяжести, испытывает большее трение, чем удаленный. Поэтому близкий к центру тяжести палец не скользит под палкой; двигается всегда лишь тот палец, который дальше от этой точки. Как только двигавшийся палец окажется ближе к центру тяжести, нежели другой, пальцы меняются ролями; такой обмен совершается несколько раз, пока пальцы не сойдутся вплотную. И так как движется каждый раз только один из пальцев, именно тот, который дальше от центра тяжести, то естественно, что в конечном положении оба пальца сходятся под центром тяжести палки.
Рисунок 24. Опыт с линейкой. Справа – конец опыта.
Рисунок 25. Тот же опыт с половой щеткой. Почему весы не в равновесии?
Прежде чем с этим опытом покончить, повторите его с половой щеткой (рис. 25, вверху) и поставьте перед собой такой вопрос; если разрезать щетку в том месте, где она подпирается пальцами, и положить обе части на разные чашки весов (рис. 25, внизу), то какая чашка перетянет – с палкой или со щеткой?

Казалось бы, раз обе части щетки уравновешивали одна другую на пальцах, они должны уравновешиваться и на чашках весов. В действительности же чашка со щеткой перетянет. О причине нетрудно догадаться, если принять в расчет, что, когда щетка уравновешивалась на пальцах, силы веса обеих частей приложены были к неравным плечам рычага; в случае же весов те же силы приложены к концам равноплечего рычага.
Для «Павильона занимательной науки» в Ленинградском парке культуры мною был заказан набор палок с различным положением центра тяжести; палки разнимались на две обычно неравные части как раз в том месте, где находился центр тяжести. Кладя эти части на весы, посетители с удивлением убеждались, что короткая часть тяжелее длинной.
1   2   3   4   5   6   7   8   9   ...   14