Главная страница

Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме


Скачать 2.59 Mb.
НазваниеКнига по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме
АнкорYa_I_Perelman_Zanimatelnaya_fizika_Kniga_1.pdf
Дата17.05.2017
Размер2.59 Mb.
Формат файлаpdf
Имя файлаYa_I_Perelman_Zanimatelnaya_fizika_Kniga_1.pdf
ТипКнига
#33764
страница4 из 10

С этим файлом связано 80 файл(ов). Среди них: и ещё 70 файл(а).
Показать все связанные файлы
1   2   3   4   5   6   7   8   9   10
Глава пятая. СВОЙСТВА ЖИДКОСТЕЙ И ГАЗОВ
Задача о двух кофейниках
Перед вами (рис. 51) два кофейника одинаковой ширины: один высокий, другой – низкий. Какой из них вместительнее?
Рис. 51. В какой из этих кофейников можно налить больше жидкости?
Многие, вероятно, не подумав, скажут, что высокий кофейник вместительнее низкого.
Если бы вы, однако, стали лить жидкость в высокий кофейник, вы смогли бы налить его только до уровня отверстия его носика – дальше вода начнет выливаться. А так как отверстия носика у обоих кофейников на одной высоте, то низкий кофейник оказывается столь же вместительным, как и высокий с коротким носиком.
Это и понятно: в кофейнике и в трубке носика, как во всяких сообщающихся сосудах, жидкость должна стоять на одинаковом уровне, несмотря на то, что жидкость в носике весит гораздо меньше, чем в остальной части кофейника. Если же носик недостаточно высок, вы никак не нальете кофейник доверху: вода будет выливаться, Обычно носик устраивается даже выше краев кофейника, чтобы сосуд можно было немного наклонять, не выливая содержимого.
Чего не знали древние
Жители современного Рима до сих пор пользуются остатками водопровода, построенного еще древними: солидно возводили римские рабы водопроводные сооружения.
Не то приходится сказать о познаниях римских инженеров, руководивших этими работами; они явно недостаточно были знакомы с основами физики. Взгляните на прилагаемый рис. 52, воспроизведенный с картины Германского музея в Мюнхене. Вы видите, что римский водопровод прокладывался не в земле, а над ней, на высоких каменных столбах. Для чего это делалось? Разве не проще было прокладывать в земле трубы, как делается теперь? Конечно, проще, но римские инженеры того времени имели весьма смутное представление о законах сообщающихся сосудов. Они опасались, что в водоемах, соединенных очень длинной трубой, вода не установится на одинаковом уровне. Если трубы проложены в земле, следуя уклонам почвы, то в некоторых участках вода ведь должна течь вверх, – и вот римляне боялись, что вода вверх не потечет. Поэтому они обычно придавали водопроводным трубам равномерный уклон вниз на всем их пути (а для этого требовалось нередко либо вести воду в обход, либо возводить высокие арочные подпоры). Одна из римских труб, Аква Марциа, имеет в длину 100 км, между тем как прямое расстояние между ее концами вдвое меньше. Полсотни километров каменной кладки пришлось проложить из- за незнания элементарного закона физики!
45

Рис. 52. Водопроводные сооружения древнего Рима в их первоначальном виде.
Жидкости давят… вверх!
Рис. 53. Простой способ убедиться, что жидкость давит снизу вверх.
О том, что жидкости давят вниз, на дно сосуда, и вбок, на стенки, знают даже и те, кто никогда не изучал физики. Но что они давят и вверх , многие даже не подозревают.
Обыкновенное ламповое стекло поможет убедиться, что такое давление действительно существует. Вырежьте из плотного картона кружок таких размеров, чтобы он закрывал отверстие лампового стекла. Приложите его к краям стекла и погрузите в воду, как показано на рис. 53. Чтобы кружок не отпадал при погружении, его можно придерживать ниткой, протянутой через его центр, или просто прижать пальцем. Погрузив стекло до определенной глубины, вы заметите, что кружок хорошо держится и сам, не прижимаемый ни давлением пальца, ни натяжением нитки: его подпирает вода, надавливающая на него снизу вверх.
Вы можете даже измерить величину этого давления вверх. Наливайте осторожно в стекло воду; как только уровень ее внутри стекла приблизится к уровню в сосуде, кружок отпадает. Значит, давление воды на кружок снизу уравновешивается давлением на него сверху столба воды, высота которого равна глубине кружка под водой. Таков закон давления жидкости на всякое погруженное тело. Отсюда, между прочим, происходит и та “потеря” веса в жидкостях, о которой говорит знаменитый закон Архимеда.
46

Рис. 54. Давление жидкости на дно сосуда зависит только от площади дна и от высоты уровня жидкости. На рисунке показано, как проверить это правило.
Имея несколько ламповых стекол разной формы, но с одинаковыми отверстиями, вы сможете проверить и другой закон, относящийся к жидкостям, а именно: давление жидкости на дно сосуда зависит только от площади дна и высоты уровня, от формы же сосуда оно совершенно не зависит. Проверка будет состоять в том, что вы проделаете описанный сейчас опыт с разными стеклами, погружая их на одну и ту же глубину (для чего надо предварительно приклеить к стеклам бумажные полоски на равной высоте). Вы заметите, что кружок всякий раз будет отпадать при одном и том же уровне воды в стеклах (рис. 54).
Значит, давление водяных столбов различной формы одинаково, если только одинаковы их основание и высота. Обратите внимание на то, что здесь важна именно высота , а не длина, потому что длинный наклонный столб давит на дно совершенно так же, как и короткий отвесный столб одинаковой с ним высоты (при равных площадях оснований).
Что тяжелее?
На одну чашку весов поставлено ведро, до краев наполненное водой. На другую – точно такое же ведро, тоже полное до краев, но в нем плавает кусок дерева (рис. 55). Какое ведро перетянет?
Я пробовал задавать эту задачу разным лицам и получал разноречивые ответы. Одни отвечали, что должно перетянуть то ведро, в котором плавает дерево, потому что “кроме воды, в ведре есть еще и дерево”. Другие – что, наоборот, перетянет первое ведро, “так как вода тяжелее дерева”.
Но ни то, ни другое не верно: оба ведра имеют одинаковый вес. Во втором ведре, правда, воды меньше, нежели в первом, потому что плавающий кусок дерева вытесняет некоторый ее объем. Но, по закону плавания, всякое плавающее тело вытесняет своей погруженной частью ровно столько жидкости (по весу), сколько весит все это тело. Вот почему весы и должны оставаться в равновесии.
Рис. 55. Оба ведра одинаковы и наполнены водой до краев; в одном плавает кусок дерева. Которое перетянет?
Решите теперь другую задачу. Я ставлю на весы стакан с водой и рядом кладу гирьку.
Когда весы уравновешены гирями на чашке, я роняю гирьку в стакан с водой. Что сделается
47
с весами?
По закону Архимеда, гирька в воде становится легче, чем была вне воды. Можно, казалось бы, ожидать, что чашка весов со стаканом поднимется. Между тем в действительности весы останутся в равновесии. Как это объяснить?
Гирька в стакане вытеснила часть воды, которая оказалась выше первоначального уровня; вследствие этого увеличивается давление на дно сосуда, так что дно испытывает добавочную силу, равную потере веса гирькой.
Естественная форма жидкости
Мы привыкли думать, что жидкости не имеют никакой собственной формы. Это неверно. Естественная форма всякой жидкости – шар. Обычно сила тяжести мешает жидкости принимать эту форму, и жидкость либо растекается тонким слоем, если разлита без сосуда, либо же принимает форму сосуда, если налита в него. Находясь внутри другой жидкости такого же удельного веса, жидкость по закону Архимеда “теряет” свой вес: она словно ничего не весит, тяжесть на нее не действует – и тогда жидкость принимает свою естественную, шарообразную форму.
Прованское масло плавает в воде, но тонет в спирте. Можно поэтому приготовить такую смесь из воды и спирта, в которой масло не тонет и не всплывает. Введя в эту смесь немного масла посредством шприца, мы увидим странную вещь: масло собирается в большую круглую каплю, которая не вплывает и не тонет, а висит неподвижно [Чтобы форма шара не казалась искаженной, нужно производить опыт в сосуде с плоскими стенками
(или в сосуде любой формы, но поставленном внутри наполненного водой сосуда с плоскими стенками)] (рис. 56).
Рис. 56. Масло внутри сосуда с разбавленным спиртом собирается в шар, который не тонет и не всплывает (опыт Плато).
Рис. 57. Если масляный шар в спирте быстро вращать при помощи воткнутого в него стерженька, от шара отделяется кольцо.
Опыт надо проделывать терпеливо и осторожно, иначе получится не одна большая капля, а несколько шариков поменьше. Но и в таком виде опыт достаточно интересен.
Это, однако, еще не все. Пропустив через центр жидкого масляного шара длинный деревянный стерженек или проволоку, вращают их. Масляный шар принимает участие в этом вращении. (Опыт удается лучше, если насадить на ось небольшой смоченный маслом картонный кружочек, который весь оставался бы внутри шара.) Под влиянием вращения шар начинает сначала сплющиваться, а затем через несколько секунд отделяет от себя кольцо
(рис. 57). Разрываясь на части, кольцо это образует не бесформенные куски, а новые шарообразные капли, которые продолжают кружиться около центрального шара.
48

Рис. 58. Упрощение опыта Плато.
Впервые этот поучительный опыт произвел бельгийский физик Плато. Здесь описан опыт Плато в его классическом виде. Гораздо легче и не менее поучительно произвести его в ином виде. Маленький стакан споласкивают водой, наполняют прованским маслом и ставят на дно большого стакана; в последний наливают осторожно столько спирта, чтобы маленький стакан был весь в него погружен. Затем по стенке большого стакана из ложечки осторожно доливают понемногу воду. Поверхность масла в маленьком стакане становится выпуклой; выпуклость постепенно возрастает и при достаточном количестве подлитой воды поднимается из стакана, образуя шар довольно значительных размеров, висящий внутри смеси спирта и воды (рис. 58).
За неимением спирта можно проделать этот опыт с анилином – жидкостью, которая при обыкновенной температуре тяжелее воды, а при 75 – 85 °С легче ее. Нагревая воду, мы можем, следовательно, заставить анилин плавать внутри нее, причем он принимает форму большой шарообразной капли. При комнатной температуре капля анилина уравновешивается в растворе соли [Из других жидкостей удобен ортотолуидин – темно-красная жидкость; при
24° она имеет такую же плотность, как и соленая вода, в которую и погружают ортотолуидин].
Почему дробь круглая?
Сейчас мы говорили о том, что всякая жидкость, освобожденная от действия тяжести, принимает свою естественную форму – шарообразную. Если вспомните сказанное раньше о невесомости падающего тела и примете в расчет, что в самом начале падения можно пренебречь ничтожным сопротивлением воздуха [Дождевые капли опускаются ускоренно только в самом начале падения; уже примерно ко второй половине первой секунды падения устанавливается равномерное движение: все капли, уравновешивается силой сопротивления воздуха, которая возрастает с ростом скорости капли.], то сообразите, что падающие порции жидкости также должны принимать форму шаров. И действительно, падающие капли дождя имеют форму шариков. Дробинки – не что иное, как застывшие капли расплавленного свинца, который при заводском способе изготовления заставляют падать каплями с большой высоты в холодную воду: там они затвердевают в форме совершенно правильных шариков.
49

Рис. 59. Башня дроболитейного завода.
Так отлитая дробь называется “башенной”, потому что при отливке ее заставляют падать с верхушки высокой “дроболитейной” башни (рис. 59). Башни дроболитейного завода
– металлической конструкции и достигают в высоту 45 м; в самой верхней части располагается литейное помещение с плавильными котлами, внизу – бак с водой. Отлитая дробь подлежит еще сортировке и отделке. Капля расплавленного свинца застывает в дробинку еще во время падения; бак с водой нужен лишь для того, чтобы смягчить удар дробинки при падении и предотвратить искажение ее шарообразной формы. (Дробь диаметром больше 6 мм, так называемая картечь, изготовляется иначе: вырубкой из проволоки кусочков, потом обкатываемых.)
“Бездонный” бокал
Вы налили воды в бокал до краев. Он полон. Возле бокала лежат булавки. Может быть, для одной-двух булавок еще найдется место в бокале? Попробуйте.
Рис. 60. Поразительный опыт с булавками в бокале воды.
Начните бросать булавки и считайте их. Бросать надо осмотрительно: бережно погружайте острие в воду и затем осторожно выпускайте булавку из руки, без толчка или давления, чтобы сотрясением не расплескать воды. Одна, две, три булавки упали на дно –
50
уровень воды остался неизменным. Десять, двадцать, тридцать булавок… Жидкость не выливается. Пятьдесят, шестьдесят, семьдесят… Целая сотня булавок лежит на дне, а вода из бокала все еще не выливается (рис. 60).
Не только не выливается, но даже и не поднялась сколько-нибудь заметным образом над краями. Продолжайте добавлять булавки. Вторая, третья, четвертая сотня булавок очутилась в сосуде – и ни одна капля не перелилась через край; но теперь уже видно, как поверхность воды вздулась, возвышаясь немного над краями бокала. В этом вздутии вся разгадка непонятного явления. Вода мало смачивает стекло, если оно хотя немного загрязнено жиром; края же бокала – как и вся употребляемая нами посуда – неизбежно покрывается следами жира от прикосновения пальцев. Не смачивая краев, вода, вытесняемая булавками из бокала, образует выпуклость. Вздутие незначительно на глаз, но если дадите себе труд вычислить объем одной булавки и сравните его с объемом той выпуклости, которая слегка вздулась над краями бокала, вы убедитесь, что первый объем в сотни раз меньше второго, и оттого в “полном” бокале может найтись место еще для нескольких сотен булавок. Чем шире посуда, тем больше булавок она способна вместить, потому что тем больше объем вздутия.
Сделаем для ясности примерный подсчет. Длина булавки – около 25 мм, толщина ее – полмиллиметра. Объем такого цилиндра нетрудно вычислить по известной формуле геометрии (p*d2*h/4), он равен 5 куб. мм. Вместе с головкой объем булавки не превышает
5,5 куб. мм.
Теперь подсчитаем объем водяного слоя, возвышающегося над краями бокала. Диаметр бокала 9 см = 90 мм. Площадь такого круга равна около 6400 кв. мм. Считая, что толщина поднявшегося слоя только 1 мм, имеем для его объема 6400 куб. мм; это больше объема булавки в 1200 раз. Другими словами, “полный” бокал воды может принять еще свыше тысячи булавок! И действительно, осторожно опуская булавки, можно погрузить их целую тысячу, так что для глаз они словно займут весь сосуд и будут даже выступать над его краями, а вода все-таки еще не будет выливаться.
Любопытная особенность керосина
Кому приходилось иметь дело с керосиновой лампой, тот, вероятно, знаком с досадными неожиданностями, обусловленными одной особенностью керосина. Вы наполняете резервуар, вытираете его снаружи досуха, а через час находите его снова мокрым.
Дело в том, что вы недостаточно плотно завинтили горелку и керосин, стремясь растечься по стеклу, выполз на наружную поверхность резервуара. Если желаете оградить себя от подобных “сюрпризов”, вы должны возможно плотнее завинчивать горелку.
Эта ползучесть керосина весьма неприятным образом ощущается на судах, машины которых потребляют керосин (или нефть). На подобных судах, если не приняты меры, положительно невозможно перевозить никакие товары, кроме тех же керосина или нефти, потому что жидкости эти, выползая из баков через незаметные скважины, растекаются не только по металлической поверхности самих баков, но проникают решительно всюду, даже в одежду пассажиров, сообщая всем предметам свой неистребимый запах. Попытки бороться с этим злом остаются часто безрезультатными. Английский юморист Джером не очень преувеличивал, когда в повести “Трое в одной лодке” рассказывал о керосине следующее:
“Я не знаю вещества, более способного просачиваться всюду, чем керосин. Мы держали его на носу лодки, а он оттуда просочился на другой конец, пропитав своим запахом все, что попадалось ему по пути. Просачиваясь сквозь обшивку, он капал в воду, портил воздух и небо, отравлял жизнь. Иногда керосиновый ветер дул с запада, иногда с востока, а иной раз это был северный керосиновый ветер или, может быть, южный, но, прилетал ли он из снежной Арктики или зарождался в песках пустыни, он всегда достигал нас, насыщенный ароматом керосина. По вечерам это благоухание уничтожало прелесть заката, а лучи месяца
51
положительно источали керосин… Привязав лодку у моста, мы пошли прогуляться по городу, но ужасный запах преследовал нас. Казалось, весь город был им пропитан”. (На самом деле, конечно, пропитано было им лишь платье путешественников.)
Способность керосина смачивать наружную поверхность резервуаров подала повод к неправильному мнению, будто керосин может проникать сквозь металлы и стекло.
Копейка, которая в воде не тонет,
существует не только в сказке, но и в действительности. Вы убедитесь в этом, если проделаете несколько легко выполнимых опытов. Начнем с более мелких предметов – с иголок. Кажется невозможным заставить стальную иглу плавать на поверхности воды, а между тем это не так трудно сделать. Положите на поверхность воды лоскуток папиросной бумаги, а на него – совершенно сухую иголку. Теперь остается только осторожно удалить папиросную бумагу из-под иглы. Делается это так: вооружившись другой иглой или булавкой, слегка погружают края лоскутка в воду, постепенно подходя к середине; когда лоскуток весь намокнет, он упадет на дно, игла же будет продолжать плавать (рис. 61). При помощи магнита, подносимого к стенкам стакана на уровне воды, вы можете даже управлять движением этой плавающей на воде иглы.
При известной сноровке можно обойтись и без папиросной бумаги: захватив иглу пальцами посредине, уроните ее в горизонтальном положении с небольшой высоты на поверхность воды.
Рис. 61. Игла, плавающая на воде. Вверху – разрез иглы (2 мм толщины) и точная форма углубления на воде (увеличено в 2 раза). Внизу – способ заставить иглу плавать на воде с помощью лоскутка бумаги.
Вместо иглы можно заставить плавать булавку (то и другое – не толще 2 мм), легкую пуговицу, мелкие плоские металлические предметы. Наловчившись в этом, попробуйте заставить плавать и копейку.
Причина плавания этих металлических предметов та, что вода плохо смачивает металл, побывавший в наших руках и потому покрытый тончайшим слоем жира. Оттого вокруг плавающей иглы на поверхности воды образуется вдавленность, ее можно даже видеть.
Поверхностная пленка жидкости, стремясь распрямиться, оказывает давление вверх на иглу и тем поддерживает ее. Поддерживает иглу также и выталкивающая сила жидкости, согласно закону плавания: игла выталкивается снизу с силой, равной весу вытесненной ею воды.
Всего проще добиться плавания иглы, если смазать ее маслом; такую иглу можно прямо класть на поверхность воды, и она не потонет.
Вода в решете
Оказывается, что и носить воду в решете возможно не только в сказке. Знание физики поможет исполнить такое классически невозможное дело. Для этого надо взять проволочное
52
решето сантиметров 15 в поперечнике и с не слишком мелкими ячейками (около 1 мм) и окунуть его сетку в растопленный парафин. Затем вынуть решето из парафина: проволока окажется покрытой тонким слоем парафина, едва заметным для глаз.
Решето осталось решетом – в нем есть сквозные отверстия, через которые свободно проходит булавка, – но теперь вы можете, в буквальном смысле слова, носить в нем воду. В таком решете удерживается довольно высокий слой воды, не проливаясь сквозь ячейки; надо только осторожно налить воду и оберегать решето от толчков.
Почему же вода не проливается? Потому что, не смачивая парафин, она образует в ячейках решета тонкие пленки, обращенные выпуклостью вниз, которые и удерживают воду
(рис. 62).
Рис. 62. Почему вода не выливается из парафинированного решета.
Такое парафинированное решето можно положить на воду, и оно будет держаться на ней. Значит, возможно не только носить воду в решете, но и плавать на нем.
Этот парадоксальный опыт объясняет ряд обыкновенных явлений, к которым мы чересчур привыкли, чтобы задумываться об их причине. Смоление бочек и лодок, смазывание салом пробок и втулок, окрашивание масляной краской и вообще покрытие маслянистыми веществами всех тех предметов, которые мы хотим сделать непроницаемыми для воды, а также и прорезинивание тканей – все это не что иное, как изготовление решета вроде сейчас описанного. Суть дела и там и тут одна и та же, только в случае с решетом она выступает в необычном виде.
Пена на службе техники
Опыт плавания стальной иглы и медной монеты на воде имеет сходство с явлением, используемым в горнометаллургической промышленности для “обогащения” руд, т. е. для увеличения содержания в них ценных составных частей. Техника знает много способов обогащения руд; тот, который мы сейчас имеем в виду и который называется “флотацией”, – наиболее действенный; он успешно применяется даже в тех случаях, когда все остальные не достигают цели.
Рис. 63. Как происходит флотация.
Сущность флотации (т. е. всплывания) состоит в следующем. Тонко измельченная руда загружается в чан с водой и с маслянистыми веществами, которые способны обволакивать частицы полезного минерала тончайшими пленками, не смачиваемыми водой. Смесь энергично перемешивается с воздухом, образуя множество мельчайших пузырьков – пену.
При этом частицы полезного минерала, облеченные тонкой маслянистой пленкой, приходя в соприкосновение с оболочкой воздушного пузырьки, пристают к ней и повисают на пузырьке, который и выносит их вверх, как воздушный шар в атмосфере поднимает гондолу
(рис. 63). Частицы же пустой породы, не облеченные маслянистым веществом, не пристают к оболочке и остаются в жидкости. Надо заметить, что воздушный пузырек пены гораздо больше по объему, нежели минеральная частица, и плавучесть его достаточна для увлечения твердой крупинки вверх. В итоге частицы полезного минерала почти все оказываются в пене,
53
покрывающей жидкость. Пену снимают и направляют в дальнейшую обработку – для получения так называемого “концентрата”, который в десятки раз богаче полезным минералом, нежели первоначальная руда.
Техника флотации разработана так тщательно, что надлежащим подбором примешиваемых жидкостей можно отделить каждый полезный минерал от пустой породы любого состава.
К самой идее флотации привела не теория, а внимательное наблюдение случайного факта. В конце прошлого века американская учительница (Карри Эверсон), стирая загрязненные маслом мешки, в которых хранился раньше медный колчедан, обратила внимание на то, что крупинки колчедана всплывают с мыльной пеной. Это и послужило толчком к развитию способа флотации.
Мнимый “вечный” двигатель
В книгах иногда описывается в качестве настоящего “вечного” двигателя прибор такого устройства (рис.64): масло (или вода), налитое в сосуд, поднимается фитилями сначала в верхний сосуд, а оттуда другими фитилями – еще выше; верхний сосуд имеет желоб для стока масла, которое падает на лопатки колеса, приводя его во вращение. Стекшее вниз масло снова поднимается по фитилям до верхнего сосуда. Таким образом, струя масла, стекающая по желобку на колесо, ни на секунду не прерывается, и колесо вечно должно находиться в движении…
Если бы авторы, описывающие эту вертушку, дали себе труд ее изготовить, они, конечно, убедились бы, что не только колесо не вертится, но что ни одна капля жидкости даже не попадает в верхний сосуд!
Рис. 64. Неосуществимая вертушка.
Это можно сообразить, впрочем, и не приступая к изготовлению вертушки. В самом деле, почему изобретатель думает, что масло должно стекать вниз с верхней, загнутой части фитиля? Капиллярное притяжение, преодолев тяжесть, подняло жидкость вверх по фитилю; но ведь та же причина удержит жидкость в порах намокшего фитиля, не давая ей капать с него. Если допустить, что в верхний сосуд нашей мнимой вертушки от действия капиллярных сил может попасть жидкость, то надо будет признать, что те же фитили, которые будто бы доставили ее сюда, сами же и перенесли бы ее обратно в нижний.
Этот мнимый вечный двигатель напоминает другую водяную машину “вечного” движения, придуманную еще в 1575 г. итальянским механиком Страдою Старшим. Мы изображаем здесь этот забавный проект (рис. 65). Архимедов винт, вращаясь, поднимает воду в верхний бак, откуда она вытекает из лотка струёй, ударяющей в лопатки наливного колеса (справа внизу). Водяное колесо вращает точильный станок, а одновременно двигает, с помощью ряда зубчатых колес, тот самый архимедов винт, который поднимает воду в верхний бак. Винт вращает колесо, а колесо – винт!… Если бы возможны были подобные механизмы, то проще всего было бы устроить так: перекинуть веревку через блок и привязать к ее концам одинаковые гири: когда один груз опускался бы, он приподнимал бы тем самым другой груз, а тот, опускаясь с этой высоты, поднимал бы первый. Чем не
“вечный” двигатель?
54

Рис. 65. Старинный проект водяного “вечного” двигателя для точильного камня.
Мыльные пузыри
Умеете ли вы выдувать мыльные пузыри? Это не так просто, как кажется. И мне казалось, что здесь никакой сноровки не нужно, пока я не убедился на деле, что уменье выдувать большие и красивые пузыри – своего рода искусство, требующее упражнения. Но стоит ли заниматься таким пустым делом, как выдувание мыльных пузырей?
В общежитии они пользуются худой славой; по крайней мере в разговоре мы вспоминаем о них для не особенно лестных уподоблений. Совсем иначе смотрит на них физик. “Выдуйте мыльный пузырь, – писал великий английский ученый Кельвин, – и смотрите на него: вы можете заниматься всю жизнь его изучением, не переставая извлекать из него уроки физики”.
Действительно, волшебные переливы красок на поверхности тончайших мыльных пленок дают физику возможность измерить длину световых волн, а исследование натяжения этих нежных пленок помогает изучать законы действия сил между частицами, – тех сил сцепления, при отсутствии которых в мире не существовало бы ничего, кроме тончайшей пыли.
Те немногие опыты, которые описаны ниже, не преследуют столь серьезных задач. Это просто интересное развлечение, которое лишь познакомит нас с искусством выдувания мыльных пузырей. Английский физик Ч. Бойс в книге “Мыльные пузыри” подробно описал длинный ряд разнообразных опытов с ними. Интересующихся мы и отсылаем к этой превосходной книге, здесь же опишем лишь простейшие опыты.
Их можно производить с раствором простого хозяйственного мыла [Туалетные сорта для этой цели менее пригодны], но для желающих мы укажем на чисто оливковое или миндальное мыло, которое наиболее пригодно для получения крупных и красивых мыльных пузырей. Кусок такого мыла разводят осторожно в чистой холодной воде, пока не получится довольно густой раствор. Всего лучше пользоваться чистой дождевой или снеговой водой, а за неимением их – кипяченой и охлажденной водой. Чтобы пузыри держались долго, Плато советует прибавлять к мыльному раствору 1/3 глицерина (по объему). С поверхности раствора удаляют ложкой пену и пузырьки, а затем погружают в него тонкую глиняную трубочку, конец которой изнутри и извне вымазан предварительно мылом. Достигают хороших результатов и с помощью соломинок, длиной сантиметров в десять, крестообразно расщепленных на конце.
Выдувают пузырь так: окунув трубку в раствор, держа трубку отвесно, так, чтобы на конце ее образовалась пленка жидкости, осторожно дуют в нее. Так как пузырь наполняется при этом теплым воздухом наших легких, который легче окружающего комнатного воздуха, то выдутый пузырь тотчас же поднимается вверх.
55

Если удастся сразу выдуть пузырь сантиметров в 10 диаметром, то раствор годен; в противном случае прибавляют в жидкость еще мыла до тех пор, пока можно будет выдувать пузыри указанного размера. Но этого испытания мало. Выдув пузырь, обмакивают палец в мыльный раствор и стараются пузырь проткнуть; если он не лопнет, то можно приступить к опытам; если же пузырь не выдержит – надо прибавить еще немного мыла.
Производить опыты нужно медленно, осторожно, спокойно. Освещение должно быть по возможности яркое, иначе пузыри не покажут своих радужных переливов.
Вот несколько занимательных опытов с пузырями.
Мыльный пузырь вокруг цветка. В тарелку или на поднос наливают мыльного раствора настолько, чтобы дно тарелки было покрыто слоем в 2 – 3 мм; в середину кладут цветок или вазочку и накрывают стеклянной воронкой. Затем, медленно поднимая воронку, дуют в ее узкую трубочку, – образуется мыльный пузырь; когда же этот пузырь достигнет достаточных размеров, наклоняют воронку, как показано на рис. 66, высвобождая из-под нее пузырь.
Тогда цветок окажется лежащим под прозрачным полукруглым колпаком из мыльной пленки, переливающей всеми цветами радуги.
Вместо цветка можно взять статуэтку, увенчав ее голову мыльным пузырьком (рис. 66).
Для этого необходимо предварительно капнуть на голову статуэтки немного раствора, а затем, когда большой пузырь уже выдут, проткнуть его и выдуть внутри пего маленький.
Несколько пузырей друг в друге (рис. 66). Из воронки, употребленной для описанного опыта, выдувают, как и в том случае, большой мыльный пузырь. Затем совершенно погружают соломинку в мыльный раствор так, чтобы только кончик ее, который придется взять в рот, остался сухим, и просовывают ее осторожно через стенку первого пузыря до центра; медленно вытягивая затем соломинку обратно, не доводя ее, однако до края, выдувают второй пузырь, заключенный в первом, в нем – третий, четвертый и т. д.
Рис. 66. Опыты с мыльными пузырями: пузырь на цветке; пузырь вокруг вазы; ряд пузырей друг в друге; пузырь на статуэтке внутри другого пузыря.
Цилиндр из мыльной пленки (рис. 67) получается между двумя проволочными кольцами. Для этого на нижнее кольцо спускают обыкновенный шарообразный пузырь, затем сверху к пузырю прикладывают смоченное второе кольцо и, поднимая его вверх, растягивают пузырь, пока он не сделается цилиндрическим. Любопытно, что если вы поднимете верхнее кольцо на высоту большую, чем длина окружности кольца, то цилиндр в одной половине сузится, в другой – расширится и затем распадется на два пузыря.
Пленка мыльного пузыря все время находится в натяжении и давит на заключенный в ней воздух; направив воронку к пламени свечи, вы можете убедиться, что сила тончайших пленок не так уж ничтожна; пламя заметно уклонится в сторону (рис. 68).
Интересно наблюдать за пузырем, когда он из теплого помещения попадает в холодное: он видимо уменьшается в объеме и, наоборот, раздувается, попадая из холодной комнаты в теплую. Причина кроется, конечно, в сжатии и расширении воздуха, заключенного внутри пузыря. Если, например, на морозе в – 15° С объем пузыря 1000 куб. см и он с мороза попал в помещение, где температура +15° С, то он должен увеличиться в объеме примерно на 1000
* 30 * 1/273 = около 110 куб. см.
56

Рис. 67. Как получить мыльную фигуру в форме цилиндра.
Рис. 68. Воздух вытесняется стенками мыльного пузыря.
Следует отметить еще, что обычные представления о недолговечности мыльных пузырей не вполне правильны: при надлежащем обращении удается сохранить мыльный пузырь в продолжение целых декад. Английский физик Дьюар (прославившийся своими работами по сжижению воздуха) хранил мыльные пузыри в особых бутылках, хорошо защищенных от пыли, высыхания и сотрясения воздуха; при таких условиях ему удалось сохранять некоторые пузыри месяц и более. Лоренсу в Америке удавалось годами сохранять мыльные пузыри под стеклянным колпаком.
Что тоньше всего?
Немногие, вероятно, знают, что пленка мыльного пузыря представляет собой одну из самых тонких вещей, какие доступны невооруженному зрению. Обычные предметы сравнения, служащие в нашем языке для выражения тонкости, чрезвычайно грубы по сравнению с мыльной пленкой. “Тонкий, как волос”, “тонкий, как папиросная бумага” – означают огромную толщину рядом с толщиной стенки мыльного пузыря, которая в 5000 раз тоньше волоса и папиросной бумаги. При увеличении в 200 раз человеческий волос имеет толщину около сантиметра, разрез же мыльной пленки даже в таком увеличении еще недоступен зрению. Требуется увеличение еще в 200 раз, чтобы разрез стенки мыльного пузыря усматривался в виде тонкой линии; волос же при таком увеличении (в 40000 раз!) будет иметь свыше 2 м в толщину. Рис. 69 дает наглядное представление об этих соотношениях.
57

Рис. 69. Вверху – игольное ушко, человеческий волос, бацилла и паутинная нить, увеличенные в 200 раз. Внизу – бациллы и толщина мыльной пленки, увеличенные в 40000 раз. 1 мю=0,0001 см.
Сухим из воды
Положите монету на большую плоскую тарелку, налейте столько воды, чтобы она покрыла монету, и предложите гостям взять ее прямо руками, не замочив пальцев.
Эта, казалось бы, невозможная задача довольно просто решается с помощью стакана и горящей бумажки. Зажгите бумажку, положите ее горящей внутрь стакана и быстро поставьте стакан на тарелку близ монеты, дном вверх. Бумажка погаснет, стакан наполнится белым дымом, а затем под ним сама собой соберется вся вода с тарелки. Монета же, конечно, останется на месте, и через минуту, когда она обсохнет, вы сможете взять ее, не замочив пальцев.
Какая сила вогнала воду в стакан и поддерживает ее на определенной высоте?
Атмосферное давление. Горящая бумажка нагрела в стакане воздух, давление его от этого возросло, и часть газа вышла наружу. Когда бумажка погасла, воздух снова остыл, но при охлаждении его давление ослабело и под стакан вошла вода, вгоняемая туда давлением наружного воздуха.
Вместо бумажки можно пользоваться спичками, воткнутыми в пробочный кружок, как показано на рис. 70.
Рис. 70. Как собрать всю веду на тарелке под стакан, опрокинутый вверх дном.
Весьма нередко приходится слышать и даже читать неверное объяснение этого старинного опыта [Первое его описание и правильное объяснение находим у древнего физика Филона Византийского, жившего около I века до нашей эры]. А именно, говорят, что
58
при этом “сгорает кислород” и потому количество газа под стаканом уменьшается. Такое объяснение грубо ошибочно. Главная причина только в нагревании воздуха, а вовсе не в поглощении части кислорода горящей бумажкой. Это следует, во-первых, из того, что можно обойтись и без горящей бумажки, а просто нагреть стакан, сполоснув его кипятком. Во- вторых, если вместо бумажки взять смоченную спиртом вату, которая горит дольше и сильнее нагревает воздух, то вода поднимается чуть не до половины стакана; между тем известно, что кислород составляет только 1/5 всего объема воздуха. Наконец нужно иметь в виду, что вместо “сгоревшего” кислорода образуется углекислый газ и водяной пар; первый, правда, растворяется в воде, но пар остается, занимая отчасти место кислорода.
Как мы пьем?
Неужели и над этим можно задуматься? Конечно. Мы приставляем стакан или ложку с жидкостью ко рту и “втягиваем” в себя их содержимое. Вот это-то простое “втягивание” жидкости, к которому мы так привыкли, и надо объяснить. Почему, в самом деле, жидкость устремляется к нам в рот? Что ее увлекает? Причина такова: при питье мы расширяем грудную клетку и тем разрежаем воздух во рту; под давлением наружного воздуха жидкость устремляется в то пространство, где давление меньше, и таким образом проникает в наш рот.
Здесь происходит то же самое, что произошло бы с жидкостью в сообщающихся сосудах, если бы над одним из этих сосудов мы стали разрежать воздух: под давлением атмосферы жидкость в этом сосуде поднялась бы. Наоборот, захватив губами горлышко бутылки, вы никакими усилиями не “втянете” из нее воду в рот, так как давление воздуха во рту и над водой одинаково.
Итак, строго говоря, мы пьем не только ртом, но и легкими ; ведь расширение легких – причина того, что жидкость устремляется в наш рот.
Улучшенная воронка
Кому случалось наливать через воронку жидкость в бутылку, тот знает, что нужно время от времени воронку приподнимать, иначе жидкость из нее не выливается. Воздух в бутылке, не находя выхода, удерживает своим давлением жидкость в воронке. Правда, немного жидкости стечет вниз, так что воздух в бутылке чуть сожмется давлением жидкости.
Но стесненный в уменьшенном объеме воздух будет иметь увеличенную упругость, достаточную, чтобы уравновесить своим давлением вес жидкости в воронке. Понятно, что, приподнимая воронку, мы открываем сжатому воздуху выход наружу, и тогда жидкость вновь начинает литься.
Поэтому весьма практично устраивать воронки так, чтобы суженная часть их имела продольные гребни на наружной поверхности, гребни, мешающие воронке вплотную приставать к горлышку.
Тонна дерева и тонна железа
Общеизвестен шуточный вопрос: что тяжелее – тонна дерева или тонна железа? Не подумавши, обыкновенно отвечают, что тонна железа тяжелее, вызывая дружный смех окружающих.
Шутники, вероятно, еще громче рассмеются, если им ответят, что тонна дерева тяжелее, чем тонна железа. Такое утверждение кажется уж ни с чем не сообразным, – и однако, строго говоря, это ответ верный!
Дело в том, что закон Архимеда применим не только к жидкостям, но и к газам. Каждое тело в воздухе “теряет” из своего веса столько, сколько весит вытесненный телом объем воздуха.
Дерево и железо тоже, конечно, теряют в воздухе часть своего веса. Чтобы получить
59
истинные их веса, нужно потерю прибавить. Следовательно, истинный вес дерева в нашем случае равен 1 тонне + вес воздуха в объеме дерева; истинный вес железа равен 1 тонне + вес воздуха в объеме железа.
Но тонна дерева занимает гораздо больший объем, нежели тонна железа (раз в 15), поэтому истинный вес тонны дерева больше истинного веса тонны железа! Выражаясь точнее, мы должны были бы сказать: истинный вес того дерева, которое в воздухе весит тонну, больше истинного веса того железа, которое весит в воздухе также одну тонну.
Так как тонна железа занимает объем в 1/8 куб. м, а тонна дерева – около 2 куб. м, то разность в весе вытесняемого ими воздуха должна составлять около 2,5 кг. Вот насколько тонна дерева в действительности тяжелее тонны железа!
Человек, который ничего не весил
Быть легким не только как пушинка, но и стать легче воздуха [Пушинка, вопреки распространенному мнению, не только не легче воздуха, но в сотни раз тяжелее его. Парит же она в воздухе лишь потому, что обладает весьма большой поверхностью, так что сопротивление воздуха ее движению велико по сравнению с ее весом], чтобы, избавившись от докучных оков тяжести, свободно подняться высоко над землей, куда угодно, – вот мечта, которая с детства кажется многим заманчивой. При этом обыкновенно забывают об одном – что люди могут свободно двигаться на Земле только потому, что они тяжелее воздуха. В сущности, “мы живем на дне воздушного океана”, – как провозгласил Торичелли, и если бы почему-либо мы сделались вдруг в тысячу раз легче – стали бы легче воздуха, – то неизбежно должны были бы всплыть к поверхности этого воздушного океана. С нами случилось бы то же, что произошло с пушкинским гусаром: “Всю склянку выпил; верь не верь – но кверху вдруг взвился я пухом”. Мы поднялись бы вверх на целые километры, пока не достигли бы области, где плотность разреженного воздуха равна плотности нашего тела.
Мечты о свободном витаний над горами и долинами рассыпались бы прахом, так как, освободившись от оков тяжести, мы сделались бы пленниками другой силы – атмосферных течений.
Рис. 71. Я здесь, старина! – сказал Пайкрафт.
Писатель Уэллс избрал такое необыкновенное положение сюжетом для одного из своих научно-фантастических рассказов. Чересчур полный человек желал во что бы то ни стало избавиться от своей полноты, А у рассказчика будто бы как раз имелся чудодейственный рецепт, который обладал способностью избавлять тучных людей от их чрезмерного веса.
Толстяк выпросил у него рецепт, принял лекарство, – и вот какого рода неожиданные сюрпризы поразили рассказчика, когда, придя навестить своего знакомца, он постучал у его дверей:
“Дверь долго не открывалась. Я слышал, как повернулся ключ, затем голос Пайкрафта
60

(так звали толстяка) произнес:
– Войдите.
Я повернул ручку и открыл дверь. Естественно, я ожидал увидеть Пайкрафта.
И знаете ли, – его не было! Кабинет был в беспорядке: тарелки и блюда стояли между книгами и письменными принадлежностями, несколько стульев было опрокинуто, но
Пайкрафта не было…
– Я здесь, старина! Закройте дверь, – сказал он. И тогда я нашел его. Он находился у самого карниза, в углу у двери, точно кто-нибудь приклеил его к потолку. Лицо у него было сердитое и выражало страх.
– Если что-нибудь подастся, то вы, Пайкрафт, упадете и сломаете себе шею, – сказал я.
– Я рад был бы этому, – заметил он.
– Человеку ваших лет и вашего веса предаваться такой гимнастике… Однако, как вы там, черт возьми, держитесь? – спросил я.
И вдруг я увидел, что он вовсе не держится, а плавает там наверху, как надутый газом пузырь.
Он сделал усилие, чтобы оторваться от потолка и сползти вдоль стены ко мне. Он ухватился за рамку гравюры, она подалась, и он снова полетел к потолку. Он хлопнулся о потолок, и тогда я догадался, почему выдающиеся части и углы его тела запачканы мелом.
Он снова, с большой осторожностью, попробовал спуститься при помощи камина.
– Это лекарство, – запыхтел он, – было слишком действительно. Потеря веса почти абсолютная.
Тут я все понял.
– Пайкрафт! – сказал я. – Ведь вам нужно было лечение от полноты , а вы всегда называли это весом… Да постойте же, я вам помогу, – сказал я, взяв несчастного за руки и дергая вниз.
Он заплясал по комнате, стараясь твердо встать где-нибудь. Курьезное зрелище! Это было очень похоже на то, как если бы я в ветреный день старался удержать парус.
– Стол этот, – сказал несчастный Пайкрафт, изнемогавший от пляски, – очень прочен и тяжел. Если бы вам удалось засунуть меня под него…
Я это сделал. Но и засунутый под письменный стол, он шатался там, как привязанный воздушный шар, ни минуты не оставаясь в покое.
– Одно лишь очевидно, – сказал я, – именно то, чего вы не должны делать. Если вы вздумаете выбраться, например, из дома, то будете подниматься все выше и выше…
Я подал мысль, что следует приспособиться к своему новому положению. Я намекнул, что ему нетрудно будет научиться ходить по потолку на руках.
– Я не могу спать, – пожаловался он.
Я указал ему, что вполне возможно прикрепить к кроватной сетке мягкий тюфяк, привязать к нему все нижние предметы тесьмами и застегивать на боку одеяло и простыню.,
Ему воздвигли в комнате лестницу, и все кушанья ставились на библиотечный шкаф.
Мы напали также на остроумную выдумку, благодаря которой Пайкрафт мог спуститься на пол, когда желал: она просто заключалась в том, что “Британская энциклопедия” была помещена на верхнюю полку открытого шкафа. Толстяк сейчас же вытащил пару томов и, держа их в руках, спустился на пол.
Я провел в его квартире целых два дня. С буравчиком и молотком в руках я соорудил здесь всевозможные остроумные приспособления для него: провел проволоку, чтобы он мог достать звонки, и т. д.
Я сидел возле камина, а он висел в своем любимом углу, у карниза, прибивая турецкий ковер к потолку, когда мне в голову пришла мысль:
– Э, Пайкрафт! – воскликнул я. – Все это совершенно излишне! Свинцовая подкладка под одеждой, и дело сделано! Пайкрафт чуть не расплакался от радости.
– Купите. – сказал я, – листового свинца и нашейте его под свое платье. Носите сапоги со свинцовыми подошвами, держите в руках чемодан из цельного свинца, и готово дело! Вы
61
не будете уже тогда пленником здесь; можете поехать за границу, можете путешествовать.
Вам никогда не придется бояться кораблекрушения: стоит вам только сбросить с себя некоторые части одежды или всю ее, и вы всегда сможете полететь по воздуху”.
Все это представляется с первого взгляда вполне согласным с законами физики. Нельзя, однако, оставить без возражений иных подробностей рассказа. Наиболее серьезное возражение то, что, утратив вес своего тела, толстяк все же не поднялся бы к потолку!
В самом деле, по закону Архимеда Пайкрафт должен был бы “всплыть” к потолку в том случае, если бы вес его платья, со всем содержимым его карманов, был меньше веса воздуха, вытесняемого тучным его телом. Чему равен вес воздуха в объеме человеческого тела, нетрудно вычислить, если вспомнить, что вес нашего тела почти равен весу такого же объема воды. Мы весим килограммов 60, вода в равном объеме – около того же, а воздух обычной плотности в 770 раз легче воды; значит, в объеме, равном объему нашего тела, воздух весит 80 г. Как ни грузен был мистер Пайкрафт, он едва ли весил больше 100 кг и, следовательно, не мог вытеснить больше 130 г. Неужели же костюм, обувь, бумажник и все прочее, что было на Пайкрафте, весило не больше 130 г? Конечно, больше. А если так, то толстяк должен был оставаться на полу комнаты, правда, в довольно неустойчивом положении, но все же не всплывать к потолку “как привязанный воздушный шар”. Только раздевшись донага, Пайкрафт должен был бы действительно всплыть к потолку. В одежде же он должен был бы уподобиться человеку, подвязанному к шару-прыгуну; небольшое усилие мускулов, легкий прыжок уносил бы его высоко над землей, откуда он в безветренную погоду плавно опускался бы обратно [Подробно о шарах-прыгунах см. гл. IV моей “3аниматсльнои механики”].
“Вечные” часы
В этой книге мы рассмотрели уже несколько мнимых “вечных двигателей” и выяснили безнадежность попыток их изобрести. Теперь побеседуем о “даровом” двигателе, т. е. о таком двигателе, который способен работать неопределенно долго без всяких забот с нашей стороны, так как черпает нужную ему энергию из неистощимых ее запасов в окружающей среде. Все конечно, видели барометр – ртутный или металлический. В первом барометре вершина ртутного столбика постоянно то поднимается, то опускается, в зависимости от перемен атмосферного давления; в металлическом – от той же причины постоянно колеблется стрелка. В XVIII веке один изобретатель использовал эти движения барометра для завода часового механизма и таким образом построил часы, которые сами собой заводились и шли безостановочно, не требуя никакого завода. Известный английский механик и астроном Фергюссон видел это интересное изобретение и отозвался о нем (в 1774 г.) так:
“Я осмотрел вышеописанные часы, которые приводятся в непрерывное движение подъемом и опусканием ртути в своеобразно устроенном барометре; нет основания думать, чтобы они когда-либо остановились, так как накопляющаяся в них двигательная сила была бы достаточна для поддержания часов в ходу на целый год даже после полного устранения барометра. Должен сказать со всей откровенностью, что, как показывает детальное знакомство с этими часами, они являются самым остроумным механизмом, какой мне когда- либо случалось видеть, – и по идее, и по выполнению”.
К сожалению, часы эти не сохранились до нашего времени – они были похищены, и местонахождение их неизвестно. Остались, впрочем, чертежи их конструкции, выполненные упомянутым астрономом, так что есть возможность их восстановить.
62

Рис. 72. Устройство дарового двигателя XVIII в.
В состав механизма этих часов входит ртутный барометр крупных размеров. В стеклянной урне, подвешенной в раме, и в опрокинутой над ней горлышком вниз большой колбе заключается около 150 кг ртути. Оба сосуда укреплены подвижно один относительно другого; искусной системой рычагов достигается то, что при увеличении атмосферного давления колба опускается и урна поднимается, при уменьшении же давления – наоборот.
Оба движения заставляют вращаться небольшое зубчатое колесо всегда в одну сторону.
Колесо неподвижно только при полной неизменности атмосферного давления, но во время пауз механизм часов движется прежде накопленной энергией падения гирь. Нелегко устроить так, чтобы гири одновременно поднимались вверх и двигали своим падением механизм. Однако старинные часовщики были достаточно изобретательны, чтобы справиться с этой задачей. Оказалось даже, что энергия колебаний атмосферного давления заметно превышала потребность, т. е. гири поднимались быстрее, чем опускались; понадобилось поэтому особое приспособление для периодического выключения падающих гирь, когда они достигали высшей точки.
Легко видеть важное принципиальное отличие этого и подобных ему “даровых” двигателей от “вечных” двигателей. В даровых двигателях энергия не создается из ничего, как мечтали устроить изобретатели вечного двигателя; она черпается извне, в нашем случае
– из окружающей атмосферы, где она накопляется солнечными лучами. Практически даровые двигатели были бы столь же выгодны, как и настоящие “вечные” двигатели, если бы конструкция их была не слишком дорога по сравнению с доставляемой ими энергией (как в большинстве случаев и бывает).
Немного далее мы познакомимся с другими типами дарового двигателя и покажем на примере, почему промышленное использование подобных механизмов оказывается, как правило, совершенно невыгодным.
63

1   2   3   4   5   6   7   8   9   10