Главная страница

New Science Джейми Дейвис Онтогенез. От клетки до человека Питер удк 575 ббк 28. 7 28. 8


Скачать 0,57 Mb.
НазваниеNew Science Джейми Дейвис Онтогенез. От клетки до человека Питер удк 575 ббк 28. 7 28. 8
АнкорDzheymi_Deyvis__Ontogenez_Ot_kletki_do_cheloveka(2).fb2
Дата14.04.2018
Размер0,57 Mb.
Формат файлаpdf
Имя файла?art=21570333&format=a4.pdf&lfrom=241867179
оригинальный pdf просмотр
ТипДокументы
#41297
страница1 из 3
Каталогid1075705

С этим файлом связано 86 файл(ов). Среди них: Ivanov_Vyach_Vs_-_Lingvistika_tretyego_tysyacheletia_pdf_1.pdf, Niderlandskiy_shutya_1.pdf, Nemetskiy_shutya_-_anekdoty_1.pdf и ещё 76 файл(а).
Показать все связанные файлы
  1   2   3

New Science
Джейми Дейвис
Онтогенез. От
клетки до человека
«Питер»

УДК 575
ББК 28.7+28.8
Дейвис Д.
Онтогенез. От клетки до человека / Д. Дейвис — «Питер»,
— (New Science)
ISBN 978-5-496-01696-4
Как мы стали такими, какие мы есть? Почему у нас две руки и ноги,
но только одна голова? Почему человеческое тело симметрично,
но в то же время его половинки не полностью идентичны? Почему отпечатки пальцев однояйцевых близнецов не одинаковые? Как развивался наш мозг и что такое сознание? Почему мы смертны и какой в этом биологический смысл?Подобные вопросы люди задавали себе с древнейших времен. Даже сейчас, при современном развитии науки, не до конца понятны те фундаментальные принципы,
благодаря которым из единственной оплодотворенной яйцеклетки формируется такой сложно организованный организм, состоящий из множества молекулярных структур, которые взаимодействуют друг с другом, имеют свой собственный цикл жизни, способны к регенерации и саморазвитию. «В основе этого лежит принцип центральной адаптивной самоорганизации», – говорит современная биология. Но что же собой представляет этот принцип?Джейми
Дейвис проделал огромную работу по адаптации сложнейшего научного материала для уровня, понятного массовому читателю.
В увлекательной и ироничной форме, снабдив свой рассказ более чем 80 иллюстрациями, автор приглашает читателя в путешествие через все аспекты биологического развития человека – от зачатия до смерти. Последние достижения эмбриологии, генетики, физики,
нейропсихологии позволят нам узнать больше о стволовых клетках и белковом метаболизме, различиях между хромосомами и функциях генов, нейронных связях и прочих важнейших факторах, влияющих на внутреннюю эволюцию человека.

УДК 575
ББК 28.7+28.8
ISBN 978-5-496-01696-4
© Дейвис Д.
© Питер

Д. Дейвис. «Онтогенез. От клетки до человека»
5
Содержание
Благодарности
7
Этическое заявление
8
Пояснение по поводу ссылок и сносок
9
Вступление
10
Глава 1 10
Часть I
20
Глава 2 20
Глава 3 29
Конец ознакомительного фрагмента.
33

Д. Дейвис. «Онтогенез. От клетки до человека»
6
Джейми Дейвис
Онтогенез. От клетки до человека
Посвящается Кэти
Life Unfolding
How the human body creates itself
JAMIE A. DAVIES
Научный редактор
Юлия Краус, ведущий научный сотрудник кафедры биологической эволюции биоло- гического факультета МГУ, кандидат биологических наук.
© Oxford University Press
© Перевод на русский язык ООО Издательство «Питер», 2017
© Серия «New Science», 2017
* * *
Эта книга издана в рамках программы «Книжные проекты Дмитрия Зимина» и про- должает серию «Библиотека фонда «Династия». Дмитрий Борисович Зимин – основатель компании «Вымпелком» (Beeline), фонда некоммерческих программ «Династия» и фонда
«Московское время». Программа «Книжные проекты Дмитрия Зимина» объединяет три про- екта, хорошо знакомых читательской аудитории: издание научно-популярных переводных книг «Библиотека фонда «Династия», издательское направление фонда «Московское время»
и премию в области русскоязычной научно-популярной литературы «Просветитель».

Д. Дейвис. «Онтогенез. От клетки до человека»
7
Благодарности
Я глубоко признателен доктору Кэти Брукс за ее неустанную поддержку, терпение,
которое она проявляла всякий раз, когда я выбивался из графика работы, а также полезные комментарии к первому варианту текста.
Я также хотел бы поблагодарить моих коллег. Это Джеймс Бриско, Майк Клинтон, Ким
Дэйл, Меган Дэйви, Питер Кайнд, Вэл Уилсон, Джорджия Перона-Райт, Томас Тайл и Шэрил
Тикл. Они оказали мне огромную услугу: проверили разделы книги, посвященные темам, в которых являются мировыми экспертами. Вся вина за оставшиеся в тексте ошибки лежит исключительно на мне. И наконец, я хочу выразить свою благодарность Латхе Менон и ее коллегам из издательства Oxford University Press за ценные редакторские замечания.

Д. Дейвис. «Онтогенез. От клетки до человека»
8
Этическое заявление
Эта книга описывает механизмы развития человека. Она содержит опубликованную в научных изданиях информацию, полученную при изучении эмбрионов человека, а также в ходе экспериментов на животных. Поскольку академические издательства и исследова- тельские фонды требуют, чтобы работа была проверена соответствующими независимыми комиссиями по этике, я сделал допущение, что процитированные в этой книге эксперименты отвечали стандартам того времени, когда они проводились. Этические стандарты постоянно меняются, и некоторые исследования, которые проводились много лет назад, сейчас запре- щены. Упоминание результатов конкретных экспериментов в этой книге не подразумевает личного этического одобрения использованных в них методов ни автором, ни издателем книги.

Д. Дейвис. «Онтогенез. От клетки до человека»
9
Пояснение по поводу ссылок и сносок
Книга адресована широкому кругу читателей, поэтому механизмы развития человека описываются в ней без излишних молекулярных подробностей. Длинные списки непроиз- носимых названий белков навевают скуку даже на профессиональных биологов и были бы совсем неуместны в книге, посвященной разъяснению фундаментальных закономерностей развития. Тем не менее иногда детали, упущенные в основном тексте, поясняются в снос- ках. Они позволят студентам биологических и медицинских специальностей увязать обсуж- даемые в книге вопросы со специальными публикациями по молекулярной эмбриологии.
Таким образом, эти сноски предназначены для узкого круга читателей и необязательны для понимания книги в целом.
По тем же причинам в книге иногда приведены ссылки на специальные исследования,
особенно в тех случаях, когда необходимо подкрепить аргументами отличную от традицион- ной точку зрения. Чтобы не перегружать текст, число подобных ссылок сведено к минимуму;
кроме того, они, как правило, отсылают не к оригинальным экспериментальным статьям,
как это обычно делается в академических изданиях, а к обзорам. Также опущены ссылки на материал, освещенный в обычных учебниках. Текст, испещренный тысячами сносок, уме- стен в научной монографии, но не в популярной книге.

Д. Дейвис. «Онтогенез. От клетки до человека»
10
Вступление
Знание не убивает предвкушения чуда, тайны. Там этой тайны
еще больше.
Анаис Нин
Глава 1
Столкновение с чуждыми нам технологиями
История человека в течение девяти месяцев до рождения,
возможно, гораздо интереснее, чем вся его оставшаяся жизнь.
Сэмюэль Тэйлор Кольридж
В этих словах английский философ и поэт Сэмюэль Кольридж выразил поэтическим языком удивление ребенка, впервые спросившего родителей: «Как я появился на свет?»
Многие взрослые полагают, что этот вопрос касается половых отношений, и начинают мучи- тельно раздумывать о том, что и когда можно рассказать. Однако ребенка вовсе не волнуют эти психосоциальные сложности, его вопрос и проще и глубже – как может появиться новый человек?
Еще ни один ребенок не получил полного и правильного ответа, потому что никто из взрослых не знает наверняка. Во времена Кольриджа были известны отдельные факты о последовательности анатомических изменений, происходящих по мере того, как новый человек растет в матке, но то, как и почему они происходят, оставалось загадкой. Два после- дующих века ученые пытались понять, как же оплодотворенная яйцеклетка превращается в ребенка. За последнее десятилетие наука шагнула далеко вперед, но по мере того, как уче- ные расшифровывают сложнейшие механизмы и разгадывают конкретные загадки, общее чувство изумления только растет. История эмбрионального развития, пока что обсуждающа- яся в основном в специализированных научных статьях, поистине поразительна. Эта исто- рия о том, что произошло с каждым из нас, и потому должна быть общим достоянием. Мне посчастливилось работать в этой области, и в этой книге я попытался собрать наиболее зна- чимые результаты современных исследований и дать ответ на самый глубокий – и самый детский – вопрос: как я появился на свет?
Наше понимание эмбрионального развития человека сложилось не в рамках какого-то одного научного подхода, а явилось результатом обобщения огромного количества инфор- мации из разных областей знания. Эмбриология и неонатология, напрямую изучающие раз- витие человека, предоставили в наше распоряжение большое количество анатомической и функциональной информации. Генетика и токсикология, области более широкие, чем биоло- гия развития, имеют огромное значение для выявления причин врожденных аномалий. Это очень важно, потому что, зная эти причины, можно выявить каскады биохимических реак- ций (так называемые молекулярные пути), необходимые для нормального развития соответ- ствующих частей тела. Биохимия и молекулярная биология незаменимы для выявления дета- лей работы молекулярных путей, вовлеченных в развитие, вплоть до уровня взаимодействия атомов биологических молекул. Клеточная биология позволяет объяснить, как за счет вза- имодействия разных молекулярных путей обеспечивается контроль поведения отдельных клеток. Исследуя более высокий уровень организации, физиология, иммунология и нейро- биология раскрывают способы коммуникации и координации множества клеток.

Д. Дейвис. «Онтогенез. От клетки до человека»
11
Все упомянутые дисциплины относятся к областям медицины или биологии, в кото- рых традиционно и проводились исследования по эмбриологии человека. Однако последнее время вклад в понимание развития человека внесли также области науки, которые на первый взгляд вообще не имеют отношения к этой теме: математика, информатика и даже филосо- фия. Они не проясняли конкретные детали (что и когда делает та или иная клетка), но затра- гивали фундаментальные вопросы, связанные с развитием, например: как простое может
стать сложным? как механизмы развития, неустойчивые по отношению к случайным
ошибкам, могут обеспечивать высокую точность воспроизведения конечного результата?
и не слишком ли развитие человека сложно для того, чтобы его могли полностью понять
даже интеллектуально развитые люди? Последний из этих вопросов остается открытым, и предметом спора является слово «полностью». Однако в решении первых двух вопросов уда- лось достичь значительного прогресса. Ответ кроется в двух смежных концепциях: «эмер- джентность» и «адаптивная самоорганизация». Это фактически две стороны одного и того же явления. «Эмерджентность» – это возникновение сложных структур и вариантов пове- дения из простых составных частей и правил; этот термин, как правило, используют те, кто смотрит на систему «вниз» с позиции «поведения на высоком уровне». «Адаптивная само- организация» – это «взгляд вверх»; этот термин позволяет описать, как применение этих простых правил к компонентам системы приводит к их коллективному поведению – выпол- нению сложных и тонких задач большого пространственного масштаба.
1
Именно благодаря адаптивной самоорганизации неживые молекулы могут создать живую клетку, а клетки с ограниченными индивидуальными возможностями – сформиро- вать способный на многое многоклеточный организм. Адаптивная самоорганизация – лейт- мотив моей книги, так как она лежит в основе биологии развития. Понятия «адаптивная самоорганизация» и «эмерджентность» выходят за рамки биологии, и в разделе «Дополни- тельная литература» я привел несколько ссылок на увлекательные книги по этой теме.
Новые данные биологии развития ясно говорят о том, что организм возникает совсем не так, как строятся здания или машины. Смешно, но факт: способы образования нашего собственного тела абсолютно чужды нашим представлениям о том, как это могло бы быть.
Поэтому, пытаясь понять, как эмбрион строит сам себя, очень полезно сравнить – и проти- вопоставить – развитие этой биологической системы с привычными способами строитель- ства объектов.
У всех инженерных проектов, будь то сборка локомотива или строительство здания,
есть общие черты. Прежде всего у любого проекта есть определенный план – это может быть чертеж или какая-либо иная схема, – ясно показывающий, что же мы хотим получить в итоге. План показывает ожидаемый результат, но частью этого результата он не будет. У
каждого проекта есть руководитель – главный инженер или архитектор, – который дает ука- зания подчиненным, а те, в свою очередь, рабочим, которые и выполняют укладку кирпича,
резку, сварку и покраску. Детали будущей конструкции не могут соединиться вместе сами по себе. Это делают рабочие – каменщики, сборщики, сварщики, – которые сами не явля- ются частью этой конструкции. При этом рабочие и главный инженер владеют огромным объемом «внешней» информации – по технологии сварки или камнетесному делу, – кото- рая не присутствует в объектах, которые они создают. И наконец, большинство рукотворных сооружений вводятся в эксплуатацию только после полного завершения работ.
1
Синонимами (или подтипами) адаптивной самоорганизации являются «роевой интеллект» и «коллективный разум».
Эти термины часто используются при изучении общественных насекомых или даже человеческих популяций, но их сло- весные формулировки наводят на мысль о «сознательности» того, что они описывают, и применительно к молекулам и клеткам звучат странно. Я предпочитаю термин «адаптивная самоорганизация», который в физических и математических кругах используется для описания того же явления.

Д. Дейвис. «Онтогенез. От клетки до человека»
12
В биологическом конструировании мы не найдем этих привычных этапов. Это лиш- ний раз подчеркивает разницу между живыми существами и инженерными конструкци- ями. В отличие от технических проектов, биологическое конструирование не подразумевает никаких чертежей и эскизов конечного результата. Безусловно, в оплодотворенной яйце- клетке содержится информация (в генах, в молекулярных структурах, в пространственном распределении концентраций химических веществ), но связь между этой информацией и тем, как в конечном итоге будет выглядеть готовый организм, далеко не проста. Известно,
что эта информация контролирует дальнейшую последовательность событий (а знаем мы это, потому что изменение этой информации, например при мутации гена или изменении концентрации определенного вещества в определенном месте, меняет последовательность событий, и развитие идет по аномальному пути).
В технике, и особенно в математике, к конечному результату можно прийти при помощи пошаговых инструкций. Рассмотрим пример: посередине пшеничного поля воткните в землю кол и привяжите к нему веревку. Возьмите другой ее конец и пройдите несколько метров, чтобы веревка натянулась. Затем идите направо, сохраняя натяжение.
Таким образом можно начертить простейшую окружность. Некоторые структуры гораздо легче создать по инструкциям, чем по чертежам. Если у вас есть под рукой карандаш и бумага, попробуйте по приведенным ниже инструкциям начертить геометрическую фигуру под названием «салфетка Серпинского».
1. Начертите равносторонний треугольник с горизонтальным основанием. Чем больше он будет, тем лучше. Будем считать его «исходным треугольником».
2. Внутри данного треугольника проведите три отрезка. Каждый из них должен прохо- дить из середины каждой стороны в середину смежной. Эти отрезки образуют переверну- тый треугольник, занимающий четверть площади исходного.
3. Заштрихуйте полученный треугольник.
4. Теперь вы видите три незаштрихованных треугольника внутри исходного. Проде- лайте с каждым из них те же операции, что и с исходным треугольников, начиная с пункта 2.
5. (Продолжайте, пока вам не надоест: если вы вооружены хорошим карандашом, это занятие может длиться вечно.)
«Салфетка Серпинского» (благодаря заштрихованным областям чертеж напоминает ажурное вязание) – пример фрактальной структуры. При любом увеличении мы получим одно и то же изображение. Еще один пример фрактала – «множество Кантора». Его удоб- нее всего рисовать на поверхности, с которой легко стирать. Подойдет школьная доска.
Нарисуйте линию, затем сотрите ее среднюю треть, после этого сотрите средние трети двух полученных линий, и так далее. Через некоторое время вы получите множество точек,
расположенных через определенные интервалы. Статистические свойства этих интервалов идентичны свойствам многих природных явлений, будь то осыпание песка с бархана или промежутки между каплями воды из подтекающего крана, землетрясениями, эпидемиями и случаями массового вымирания животных.
Пошаговые инструкции, а не эскизы используются для создания объектов не только в математике, но и в повседневной жизни; простейший пример – кулинарный рецепт. По такому же принципу работает и текстильное производство, от ручного вязания («одну петлю провязываем, одну накидываем») до «жаккардовой машины» (1801 г.), первого в мире про- мышленного робота, на котором можно было, меняя перфокарты, переключать уровни слож- ности от простейшего до самого сложного узора. Музыка также воспроизводится благодаря инструкциям, роль которых выполняют нотные знаки на нотном стане, по которым музыкант может воспроизводить звуки необходимой высоты и продолжительности в нужный момент времени.

Д. Дейвис. «Онтогенез. От клетки до человека»
13
Многовековой опыт использования инструкций для получения задуманного результата с минимальными затратами времени и усилий приводит к тому, что мы склонны считать,
что биологическая информация определяет наш внешний вид каким-то похожим образом.
Это опасное заблуждение. Между живыми организмами и рукотворными объектами есть существенное отличие: в последнем случае инструкциям следует внешний сознательный агент действия. Даже такие, казалось бы, явные исключения, как автоматическая вязальная машина или механическое пианино, созданы по инструкциям и планам теми же внешними агентами, а значит, исключениями не являются. Проще говоря, кардиганы, симфонии, авто- мобили и соборы сами себя не создавали. Следование инструкциям, привнесение необхо- димой информации о процессе (умение вязать, готовить или класть кирпич) и собственно работа с материалами осуществляются не самой растущей структурой, а извне. Напротив,
содержащаяся в эмбрионе информация считывается и обрабатывается самим эмбрионом;
ему не на кого переложить ни тяжелую физическую работу, ни раздумья об оптимизации процесса. Как мы скоро увидим, это означает, что ответственность за биологическое кон- струирование лежит на всех его участниках, а не на руководителе, как в случае реализа- ции инженерных проектов. Процесс создания тела человека контролируется не какими-то отдельно взятыми частями эмбриона, а системой в целом.
Чтобы понять особенности процесса построения, необходимо также иметь некоторое представление о природе используемых материалов. Рядом с моей лабораторией в Эдин- бургском университете находятся три знаменитых моста: элегантный мост Дин, построен- ный Томасом Телфордом, легендарный железнодорожный мост через залив, построенный
Бенджамином Бейкером, и, неподалеку от него, автодорожный мост Форд-Роуд. Телфорд построил мост из каменных блоков – тяжелых, громоздких, надежных только за счет сжи- мающего напряжения. Поэтому он использовал традиционный метод: сначала строились опоры, затем сооружался деревянный каркас для арочного пролета, затем на него выклады- вались обтесанные в форме арки камни. После того как вес камня стабилизирует пролет,
каркас можно удалить.
Бейкер использовал для строительства железнодорожного моста радикально новый по тем временам материал – сталь. Этот материал может держаться как за счет растяжения, так и за счет сжимающего напряжения, поэтому строительство можно было начинать с любой опоры, прикрепляя к ней секции одним концом. Чтобы поместить длинные и относительно легкие стальные секции на нужное место, использовались подъемные краны. Между собой эти секции соединялись с помощью заклепок.
Вантовый мост, самый новый из трех, держится за счет стальных тросов, вант, кото- рые закреплены на пилонах на разных берегах. В данном случае сначала были установлены пилоны, затем намечены опорные точки для крепления тросов, а затем постепенно натяги- вались держащие мост ванты.
В каждом из этих случаев стратегия строительства моста определялась характером материалов. Ни один из них нельзя было бы построить, используя стратегию, предназна- ченную для моста другого типа. Так же и в биологии: стратегия конструирования зависит от природы участвующих в нем компонентов. Таким образом, настало время представить вам три ключевых биологических компонента, которые будут много раз упомянуты в этой книге, – это белки, матричная РНК (мРНК) и ДНК.
Белки – основные строительные материалы в биологии. Из них создана большая часть физических структур, которые придают форму клеткам, они образуют каналы и насосы,
регулирующие циркуляцию веществ в клетках. Кроме того, белки – катализаторы. Они запускают и контролируют биохимические реакции и метаболические пути, продуктами которых являются другие составляющие организма, например ДНК, жиры и углеводы. Отно- сительную важность белков можно проиллюстрировать, например, таким фактом: эритро-

Д. Дейвис. «Онтогенез. От клетки до человека»
14
циты (красные кровяные тельца) в процессе созревания теряют ядра, в которых содержатся все их гены, но после этого живут еще около ста двадцати дней. Клетка, в которой сохрани- лись гены, но нарушилась функция белков, погибнет в течение нескольких секунд.
Белок состоит из длинной цепи отдельных блоков – аминокислот. Известно около два- дцати типов аминокислот, отличающихся по строению и химическим свойствам. Они взаи- модействуют друг с другом, и это означает, что цепочки аминокислот могут закручиваться в замысловатые формы – самопроизвольно или под действием других белков. Этот процесс закручивания настолько сложен, что невозможно, зная одну лишь последовательность ами- нокислот, предсказать, какой именно белок получится в результате. (Компьютерные про- граммы для прогнозирования формы белка существуют, но в них используется сочетание расчетов и вероятностных рассуждений, основанных на уже известной структуре белков и аминокислотных последовательностей, выявленных экспериментально с помощью рентге- новской кристаллографии. Таким образом, эти программы похожи на компьютерные про- граммы, которые используют синоптики; впрочем, надо отметить, что предсказание струк- туры белков все же точнее прогноза погоды.)
Разные белки состоят из разных последовательностей аминокислот. Они одна за дру- гой присоединяются к растущей цепи белка в порядке, который устанавливается молеку- лой, называемой матричной РНК (сокращенно мРНК) (рис. 1). Молекула мРНК тоже пред- ставляет собой одинарную цепочку отдельных блоков – азотистых оснований: аденина (A),
цитозина (C), гуанина (G) и урацила (U). По своей структуре они сходны и по сравнению с аминокислотами не так интересны в плане химических свойств: молекулы мРНК не играют большой роли в клетке помимо регуляции последовательности аминокислот в формиру- ющемся белке. Эта последовательность определяется последовательностью оснований в мРНК. Каждой аминокислоте соответствует свой код из трех азотистых оснований.

Д. Дейвис. «Онтогенез. От клетки до человека»
15
Рис. 1. Трансляция белка на рибосоме. Аминокислоты связываются в растущую бел- ковую цепь согласно последовательности оснований мРНК
Последовательность оснований в молекулах мРНК определяется последовательно- стью оснований в ДНК. ДНК – очень длинная молекула, состоящая из комбинаций четы- рех азотистых оснований: аденина, цитозина, гуанина и тимина (T), которые могут распо- лагаться в разной последовательности. Отдельные молекулы ДНК, образующие большую часть сорока шести хромосом в каждой клетке нашего тела, содержат миллионы азотистых оснований. Отдельные участки этой цепи представляют собой гены. Когда считывается гене- тическая информация, молекула РНК кодирует последовательность оснований ДНК (A, C,
G, T) на языке своих оснований (A, C, G, U). Таким образом, РНК по сути дела является копией (транскриптом) гена в другой среде. Фактическое считывание генов производится

Д. Дейвис. «Онтогенез. От клетки до человека»
16
целыми комплексами белков. Сначала они связываются с различными короткими последо- вательностями оснований в начале гена, АТААТ или TCACGCTGA. Разные гены имеют раз- ные комбинации таких коротких последовательностей, маркирующих их начало, а каждая последовательность связывается с конкретным белком. Таким образом, разные сочетания белков участвуют в активации процесса считывания различных генов.
То, что разные гены активируются разными ДНК-связывающими белками, очень важно, потому что разные клетки организма должны синтезировать разные типы белков.
Например, клетки кишечника производят белки, которые позволяют переваривать пищу,
клетки яичников синтезируют белки для половых гормонов, а лейкоциты вырабатывают белки для борьбы с микробами. Все эти клетки содержат все гены генома, даже те, которые им никогда не понадобятся. Однако считываются только гены, необходимые конкретным клеткам, и происходит это за счет присутствия «эксклюзивных» ДНК-связывающих белков.
Теперь нам волей-неволей придется отказаться от мысли, что какой бы то ни было из этих компонентов может отвечать за развитие клетки – или эмбриона – в целом. Повторю:
белки образуются только потому, что их образование диктуют (посредством мРНК) актив- ные гены. В свою очередь, эти гены активны только потому, что их активировали уже суще- ствующие белки. Таким образом, получается замкнутый круг: контроль не сосредоточен ни в одной конкретной точке, потому что он осуществляется повсюду (рис. 2).
Рис. 2. Циклическая природа биологической логики. Белки определяют гены, которые нужно считывать, а эти гены управляют образованием новых белков. Некоторые из новых белков определяют гены, которые нужно считывать… И так далее
Цикл, схема которого изображена на рис. 2, наводит на одну интересную мысль. Для того чтобы клетка сохраняла стабильность, среди активных генов должны быть такие гены,
которые определяли бы, какие белки будут связываться с последовательностями, маркиру- ющими эти самые гены. При этом, однако, набор активных генов не должен включать какие бы то ни было белки, активирующие неактивные в настоящий момент гены. Если не будут выполнены эти условия, белки, созданные набором активных генов, не смогут поддерживать активность того же самого набора генов – некоторые из них «выключатся», другие «вклю- чатся», а в результате будет сделан совсем другой набор белков, и так далее. Эти измене- ния продолжатся до тех пор, пока не будет достигнуто стабильное состояние. Именно эта

Д. Дейвис. «Онтогенез. От клетки до человека»
17
закономерность лежит в основе того, как клетки нашего организма преобразуются в про- цессе развития в клетки новых типов. Такое изменение, как правило, происходит под воз- действием внешних сигналов, которые меняют способность конкретных белков активиро- вать гены: они нарушают стабильность и вызывают переход к новому состоянию. Мы будет постоянно сталкиваться с примерами таких сигналов в последующих главах книги.
«Циклический» контроль, распределенный по всей системе, отнюдь не единственная странная особенность биологического конструирования. Есть и другая особенность, которая кажется просто фантастической, если рассматривать ее с позиции традиционной инженерии.
Ее суть в том, что биологические молекулы могут самопроизвольно объединяться в струк- туры большего пространственного масштаба. Кирпичи и болты на это точно не способны!
Этот процесс, который имеет принципиальное значение для жизни, немного напоминает рост кристаллов. Обычные кристаллы, как в наборах юного химика, образуются, потому что составляющие их молекулы могут связываться друг с другом, как правило, благодаря локаль- ным электрическим зарядам. В белках тоже есть локальные электрические заряды, часто расположенные в труднодоступных участках внутри белка или на его выпуклых частях. Рас- пределение зарядов и форма белка продиктованы последовательностью аминокислот. Ино- гда молекула белка вогнутая спереди и выпуклая сзади, так что выпуклость одного белка совпадает с вогнутой частью другого, как детали конструктора Lego. В этом случае моле- кулы белка могут выстроиться «голова к хвосту» в тонкую структуру сколь угодно большой длины (рис. 3). Чаще, однако, белок может распознавать участки связывания не только в других белках или каких-либо других молекулах, но и в собственной структуре. Это озна- чает, что он не может создавать бесконечные нити с идентичными молекулами, как это про- исходит в кристаллах, а связывается только с определенным количеством белков, образуя многокомпонентные комплексы особой структуры. Эти комплексы играют важную роль в клетках, потому что действуют подобно крошечным машинам, которые могут осуществлять сложные химические реакции или даже организовывать сборку структур, которые слишком крупны и сложны для самопроизвольной организации. Примером могут служить упоминав- шиеся выше белковые комплексы для считывания генов.

Д. Дейвис. «Онтогенез. От клетки до человека»
18
Рис. 3. Определенные участки белков (например, выпуклости, вогнутости и участки,
несущие электрический заряд) часто могут прочно связываться с комплементарными участ- ками собственной цепи или с другими белками. Когда «голова» одного белка присоединяется к «хвосту» другого, образуется длинная нить, в которой каждая молекула будет выступать в качестве звена. Когда определенный белок может связываться только с другими белками,
образуются мультибелковые комплексы определенного размера и формы. К этому типу отно- сятся белковые комплексы, транскрибирующие гены
Уровень организации белковых комплексов подводит нас к очень важному моменту.
Организация белков в комплексы основана на информации, которая находится только в самих белках («информация» в данном случае синоним структуры). Это по сути своей хими- ческий процесс, и его результат всегда одинаков – он надежный, воспроизводимый, но неиз- менный. На более высоких уровнях организации биологические структуры более измен- чивы, они приспосабливаются к тем или иным условиям. Например, форма клетки зависит от ее места в составе ткани. Ее связи с соседними клетками определяются их взаимным рас- положением. Такие образования не могут определяться исключительно информацией, зало- женной в химической структуре их молекулярных компонентов; требуются дополнительные сведения. Итак, мы переходим от структуры, управляемой изнутри, к структуре, регулиру- емой в том числе и извне, возвращаемся от чистой химии к биологии. В биологических

Д. Дейвис. «Онтогенез. От клетки до человека»
19
системах к химической самосборке добавляется разноуровневая регуляция, и в результате получаются системы, в которых структуры адаптируются к условиям среды. На этом этапе приобретает особую важность упомянутая выше концепция адаптивной самоорганизации.
Она оказывается ключом к пониманию того, как всего несколько тысяч генов и белков, не имеющие никакого представления о строении и функциях человеческого тела в целом, могут тем не менее его построить. Какой контраст с инженерными проектами, в которых для пра- вильной сборки компонентов обязательно нужны внешние агенты действия, будь то рабочие или роботы! В следующих главах речь пойдет о значимости адаптивной самоорганизации для развития человека на самых разных уровнях, от самоорганизации молекул в пределах клетки до образования сложных тканей.
У биологического строительства есть еще одна необычная особенность, и связана она с ограничением, лежащим в самой основе жизни: его нельзя остановить, чтобы пораз- мыслить, а потом начать сначала. Созданные человеком механизмы, например компью- теры и самолеты, должны функционировать только после завершения работы, а пока идет процесс сборки, от них ничего не требуется. Развитие же эмбриона сопровождается стро- гим условием: на всех этапах развития он должен оставаться живым. Если водопроводчик хочет поставить отводку, он перекрывает воду и устанавливает на главную трубу Т-образ- ный патрубок. Когда работа завершена, воду можно включить снова. А если бы такой под- ход использовался при создании человеческого организма, например при отведении нового сосуда от аорты? Плод тут же погиб бы. То же касается и других важных систем организма.
Непререкаемое требование постоянного поддержания жизнеспособности в условиях разви- тия организма является очень серьезным условием. Это еще одна причина, по которой раз- витие человеческого тела может показаться таким странным и таким сложным по сравнению с привычными способами строительства.
Пытаясь понять самые ранние стадии нашего существования, мы должны быть готовы отбросить привычные представления о процессе создания вещей и посмотреть на развитие эмбриона в свете его собственных законов. Это путешествие на неизведанные территории,
оно требует нового образа мысли. И никаких инженерных метафор! В конце концов, мы не создаем эмбрионы, это они создают нас.

Д. Дейвис. «Онтогенез. От клетки до человека»
20
Часть I
Первые наброски
  1   2   3

перейти в каталог файлов
связь с админом