Главная страница
qrcode

Технология рекомбинантной ДНК. Генная инженерия. Технология рекомбинантной днк. Генная инженерия


Скачать 23,85 Kb.
НазваниеТехнология рекомбинантной днк. Генная инженерия
Дата07.11.2019
Размер23,85 Kb.
Формат файлаdocx
Имя файлаТехнология рекомбинантной ДНК. Генная инженерия.docx
ТипДокументы
#109238
Каталог

Технология рекомбинантной ДНК. Генная инженерия


Технология рекомбинантных ДНК (также молекулярное клонирование или генная инженерия) — это совокупность экспериментальных процедур, позволяющих осуществлять перенос генетического материала (ДНК) из одного организма в другой. В настоящее время можно вырезать отдельные участки ДНК, получать нуклеотиды на ДНК — синтезаторах (приборах для автоматического химического синтеза ДНК) практически в неограниченном количестве, определять последовательность нуклеотидов (разделяя, секвенируя их) сотнями в сутки, изменять выделенный ген, вводить его вновь в геном культивируемых клеток или эмбриона животного, где этот измененный ген начинает функционировать. Эксперименты с рекомбинантными ДНК используют крупномасштабно в промышленном производстве БАВ.

Конструирование рекомбинантных молекул осуществляется с помощью ряда ферментов — обязательного и незаменимого инструмента практически всех этапов этого сложного процесса, прежде всего ферментов рестрикции (рестрицирующих эндонуклеаз, рестриктаз). Рестриктазы являются составной частью системы рестрикции — модификации прокариотических клеток. Эта система связана с защитой клеток от проникновения чужеродной ДНК. Система модификации осуществляет метилирование собственной ДНК в сайтах ее узнавания немедленно после репликации; чужеродную ДНК, проникающую в клетку, бактерии гидролизуют с помощью рестриктаз.

Различают три основных класса рестриктаз. Рестриктазы класса I разрывают молекулы ДНК в произвольных точках, рестриктазы I и III классов обладают метилирующей и эндонуклеазной активностью.Ферменты II класса, которые и используются в генной инженерии, состоят из двух отдельных белков: рестрикционной эндонуклеазы и модифицирующей метилазы.

Для введения рекомбинантной ДНК применяют два основных вектора:

1. Плазмиды.

2. Бактериофаги.

Плазмиды представляют собой внехромосомный генетический элемент в виде кольцевых молекул ДНК, содержащих 1-3% генома бактериальной клетки. Плазмиды есть у всех бактерий. Одни из них содержат информацию, обеспечивающую их собственный перенос из одной клетки в другую (F-плазмиды), другие — несут гены устойчивости к антибиотикам (R-плазмиды) или специфические наборы генов, ответственных за утилизацию метаболитов (плазмиды деградации). Каждая плазмида содержит сайт начала репликации, без которого репликация плазмиды в клетке-хозяине невозможна. Если две или более плазмиды не могут сосуществовать в одной и той же клетке — они принадлежат к одной группе несовместимости. Плазмиды, относящиеся к разным группам несовместимости, беспрепятственно существуют в одной клетке независимо от числа копий. У некоторых микроорганизмов в одной клетке обнаружено до 10 разных плазмид, каждая из которых выполняла свои функции И относилась к своей группе несовместимости. Репликация плазмид идет независимо от репликации хромосом. Количество копий определяется регуляторной системой клетки.

Таким образом, плазмиды обладают свойствами, позволяющими использовать их в качестве вектора для переноса клонируемой ДНК. Бактериальный клон, содержащий такую плазмиду, можно сравнить с фабрикой по производству этого фрагмента.

Плазмидные векторы, как правило, создают методом генной инженерии, так как природные (немодифицированные) плазмиды лишены ряда обязательных для «высококачественного вектора» свойств:

— небольшого размера, так как эффективность переноса экзогенной ДНК в Е. coli снижается при длине плазмиды более 15 тысяч пар нуклеотидов;

— наличия сайта рестрикции, в который осуществлена вставка;

— наличия одного или более селективных генетических маркеров для идентификации реципиентных клеток, несущих рекомбинантную ДНК.

Вводят плазмиды в соматические клетки с помощью химических реагентов, повышающих проницаемость клеточной оболочки. В частности, чтобы обеспечить проникновение в клетки плазмидной ДНК, их обрабатывают ледяным раствором кальция хлорида, затем выдерживают при 42 °С в течение 1,5 мин. Эта обработка приводит к локальному разрушению клеточной стенки. Максимальная частота трансформации — 10-3, т.е. на каждую тысячу клеток приходится одна трансформированная. Частота трансформации не бывает 100%-й, затем используют схемы отбора, позволяющие идентифицировать трансформированные клетки.

В качестве маркеров плазмида может содержать гены, определяющие устойчивость бактерии к антибиотикам. Вставка чужеродного (донорного) гена в маркерный ген приводит к инактивации последнего. Это позволяет отличать трансформированные клетки, получившие векторную плазмиду (утратившие устойчивость к антибиотику), от клеток, получивших рекомбинантную молекулу (сохранивших устойчивость к одному, но утративших устойчивость к другому антибиотику). Этот прием называется инактивацией маркера вставки.

Для отбора трансформированных клеток, содержащих рекомбинантную ДНК (гибридную плазмиду), проводят тестирование на резистентность к определенным антибиотикам. Например, клетки, несущие гибридную плазмиду, устойчивы к ампициллину, но чувствительны к тетрациклину (в маркерный ген которого и внедрена донорная ДНК).

Процесс разделения геномной ДНК на клонируемые элементы и введения этих элементов в клетки-хозяева называется созданием геномной библиотеки (банка клонов, банка генов).

генная инженерия иначе генетическая инженерия (англ. 
Описание
Генная инженерия является инструментом В области 
Источники
Глик Б., Пастернак Дж. Молекулярная биотехнология: Принципы и применение. — М.: Мир, 2002. — 589 с.

Нестеренко Л.Н., Тутыхина И.Л., Шмаров М.М. и др. Перспективы использования биогенных наноструктур в медицине (обзор) // 150 лет со дня рождения Николая Федоровича Гамалеи. Сборник научных трудов. — М., 2009. С. 67–79.

перейти в каталог файлов


связь с админом