Главная страница

теория вероятностей. Тема 1 Теория вероятностей. Классическое определение вероятности


НазваниеТема 1 Теория вероятностей. Классическое определение вероятности
Анкортеория вероятностей.doc
Дата19.11.2016
Размер51 Kb.
Формат файлаdoc
Имя файлаteoria_veroyatnostey.doc
ТипДокументы
#3475

С этим файлом связано 68 файл(ов). Среди них: Реферат к проекту Шаблон.doc, Оптики_1 курс_2 сем_Вопросы_к_экзамену.doc, Тема 1.docx, Tema_1.pdf, Перпендикуляр и наклонная.ppt.ppt, Voprosy_k_kzamenu_po_matematike_2_kurs_1_sem (2) оптики.doc, Konus.pdf, Программисты Вопросы к экзамену по математике 2 семестр.doc, Результаты экзамена по математике 12 группы.xlsx и ещё 58 файл(а).
Показать все связанные файлы

Тема 1: Теория вероятностей. Классическое определение вероятности

Цель: познакомить с понятием события в теории вероятности, формулами классического определения теории вероятности, решать задачи при помощи этой формулы
Задание. Составить конспект согласно следующим пунктам:

  1. Какие вопросы исследует теория вероятностей?

  2. Заполните таблицу

    Виды событий










    Определение вида события










    P(A)










  3. Какие события называются несовместными?

  4. Какая формула отражает классическое определение вероятности?

  5. Основные правила вычисления сложных событий

  6. Решите задачу


Теория вероятностей возникла в середине XVII века. Первые работы по теории вероятностей, принадлежащие французским учёным Б. Паскалю и П. Ферма и голландскому учёному X. Гюйгенсу, появились в связи с подсчётом различных вероятностей в азартных играх. Крупный успех теории вероятностей связан с именем швейцарского математика Я. Бернулли, установившего закон больших чисел для схемы независимых испытаний с двумя исходами.

Следующий (второй) период истории теории вероятностей ( XVIII в. и начало ХIХ в.) связан с именами А. Муавра (Англия), П. Лапласа (Франция), К. Гаусса (Германия) и С. Пуассона (Франция). Это - период, когда теория вероятностей уже находит ряд весьма актуальных применений в естествознании и технике (главным образом в теории ошибок наблюдений, развившейся в связи с потребностями геодезии и астрономии, и в теории стрельбы).

Третий период истории теории вероятностей, (вторая половина XIX в.) связан в основном с именами русских математиков П. Л. Чебышева, А. М. Ляпунова и А. А. Маркова (старшего). Теория вероятностей развивалась в России и раньше (в XVIII в. ряд трудов по теории вероятностибыл написан работавшими в России Л. Эйлером, Н. Бернулли и Д. Бернулли; во второй период развития теории вероятностей следует отметить работы М. В. Остроградского по вопросам теории вероятностей,связанным с математической статистикой, и В. Я. Буняковского по применениям теории вероятностей к страховому делу, статистике и демографии).

Теория вероятностей - математическая наука, позволяющая по вероятностям одних случайных событий находить вероятности других случайных событий, связанных каким-либо образом с первыми. Утверждение о том, что какое-либо событие наступает с вероятностью, равной, например, ½, ещё не представляет само по себе окончательной ценности, так как мы стремимся к достоверному знанию. Окончательную познавательную ценность имеют те результаты теории вероятностей, которые позволяют утверждать, что вероятность наступления какого-либо события А весьма близка к единице или (что то же самое) вероятность не наступления события А весьма мала. В соответствии с принципом "пренебрежения достаточно малыми вероятностями" такое событие справедливо считают практически достоверным. Поэтому можно также сказать, что теория вероятностей есть математическая наука, выясняющая закономерности, которые возникают при взаимодействии большого числа случайных факторов.

Классическое определение вероятности


Основным понятием теории вероятностей является понятие случайного события. Случайным событием называется событие, которое при осуществлении некоторых условий может произойти или не произойти. Например, попадание в некоторый объект или промах при стрельбе по этому объекту из данного орудия является случайным событием.

События в теории вероятностей принято обозначать начальными прописными латинскими буквами А, В, С, ...

Событие называется достоверным, если в результате испытания оно обязательно происходит. Невозможным называется событие, которое в результате испытания произойти не может.

Случайные события называются несовместными в данном испытании, если никакие два из них не могут появиться вместе.

Случайные события образуют полную группу, если при каждом испытании может появиться любое из них и не может появиться какое-либо иное событие, несовместное с ними.

Рассмотрим полную группу равновозможных несовместных случайных событий. Такие события будем называть исходами. Исход называется благоприятствующим появлению события А, если появление этого события влечет за собой появление события А.

Примеры непосредственного определения вероятностей


Пример 1. В урне находится 8 пронумерованных шаров (на каждом шаре поставлено по одной цифре от 1 до 8). Шары с цифрами 1, 2, 3 красные, остальные – черные. Появление шара с цифрой 1 (или цифрой 2 или цифрой 3) есть событие, благоприятствующее появлению красного шара. Появление шара с цифрой 4 (или цифрой 5, 6, 7, 8) есть событие, благоприятствующее появлению черного шара.

Вероятность какого либо события – численное выражение возможности его наступления.

Вероятностью события A называют отношение числа m благоприятствующих этому событию исходов к общему числу n всех равновозможных несовместных элементарных исходов, образующих полную группу


Эта формула представляет собой так называемое классическое определение вероятности по Лапласу, пришедшее из области азартных игр, где теория вероятностей применялась для определения перспективы выигрыша.

Пример 2. Из колоды в 36 карт вынимается одна карта. Какова вероятность появления карты червовой масти?

Решение. Количество элементарных исходов (количество карт) n=36. Событие А = (Появление карты червовой масти). Число случаев, благоприятствующих появлению событияАm=9. Следовательно,
.

Свойство1. Вероятность достоверного события равна единице
Свойство2. Вероятность невозможного события равна нулю.
Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Итак, вероятность любого события удовлетворяет двойному неравенству .

Основные правила вычисления вероятностей сложных событий


Ниже приведены основные правила, позволяющие определить вероятность появления сложного события на основании известных вероятностей составляющих его более простых событий.

1. Вероятность достоверного событияравна единице:

                                                                    .                                

2. Вероятность объединения (суммы) несовместных событийравна сумме их вероятностей:

                                                                     

Эти два равенства являются аксиомами теории вероятностей, т. е. принимаются в качестве исходных, но требующих доказательства свойств вероятностей. На их основе строится вся теория вероятностей.

Все остальные, приведенные ниже без доказательств формулы могут быть выведены из принятых аксиом.

3. Вероятность невозможного событияравна нулю:

                                                                   .                                                                 

4. Вероятность события, противоположногособытию А, равна

                                                                                                                            

Формула оказывается полезной на практике в тех случаях, когда вычисление вероятности непосредственно события А затруднительно, в то время как вероятность противоположного события находится просто
5. Теорема сложения вероятностей. Вероятность объединения произвольных событий равна сумме их вероятностей за вычетом вероятности произведения событий:

                                                 
Решите задачу:

1. В урне 5 белых, 20 красных и 10 черных шаров, не отличающихся по размеру. Шары тщательно перемешивают и затем наугад вынимают 1 шар. Какова вероятность того, что вынутый шар окажется белым или черным?

перейти в каталог файлов